Abstract:
A method for setting an initial gain and an initial offset for an automatic gain and offset controller (AGOC) is described. The method includes determining a gain level at which a signal does not under-saturate or over-saturate an input to an analog-to-digital converter (ADC) by performing a binary search over a fixed set of gain levels while an offset is fixed. The method also includes determining an offset correction to bring an unmodulated carrier level at an output of the ADC to a target level. The method may also include updating the gain and the offset in response to changes in a signal level.
Abstract:
A method for setting an initial gain and an initial offset for an automatic gain and offset controller (AGOC) is described. The method includes determining a gain level at which a signal does not under-saturate or over-saturate an input to an analog-to-digital converter (ADC) by performing a binary search over a fixed set of gain levels while an offset is fixed. The method also includes determining an offset correction to bring an unmodulated carrier level at an output of the ADC to a target level. The method may also include updating the gain and the offset in response to changes in a signal level.
Abstract:
A method for inductively-coupled communications is described. The method includes receiving a signal. The method also includes analyzing the signal to estimate a symbol timing error. Estimating the symbol timing error may include comparing a location of a pause, a low-to-high or a high-to-low transition in the received signal with an ideal location of a pause or a transition. The method further includes adjusting symbol timing to correct for the symbol timing error.
Abstract:
Systems and methods to detect the occurrence of erroneous demodulated bits for decision feedback demodulation are disclosed. In one implementation, an apparatus for detecting demodulation bit errors of a plurality of modulated bits includes a memory component configured to store a first threshold and a second threshold. The apparatus further includes a processor coupled to the memory component, the processor configured to retrieve the first threshold and second threshold from the memory component and to determine a demodulation metric value for each of the plurality of modulated bits, the processor further configured to count the number of demodulation metric values that cross the first threshold and compare the second threshold to the number of demodulation metric values that cross the first threshold.
Abstract:
In a wireless communication system, an initiator, such as a card reader, can communicate with a target, such as a smart card or other device emulating a smart card, by amplitude modulating a radio frequency signal. In a receiver, levels of samples of a digital baseband signal of the amplitude modulated signal can vary. Apparatus and methods associate a received sample with a hard or sliced output state (such as +1, 0, or −1) and update a value associated with the hard output state for accurate slicing of the samples. This permits the use of hard symbols in further processing rather than soft samples, which can dramatically reduce the complexity of circuitry.