摘要:
The present invention provides methods and apparatuses for writing information to, reading information from, and erasing information on a luminescent data storage medium comprising Al2O3. The method includes writing and erasing of the information using photoionization via sequential two-photon absorption and non-destructive reading the information using one-photon absorption and confocal fluorescent detection. The apparatuses for writing and reading the information incorporate confocal detection and spherical aberration correction for multilayer volumetric fluorescent data storage. The methods also allow multilevel recording and readout of information for increased storage capacity.
摘要翻译:本发明提供了用于向包括Al 2 O 3 N 3的发光数据存储介质写入信息,读取信息和从中擦除信息的方法和装置。 该方法包括通过使用单光子吸收和共聚焦荧光检测的顺序双光子吸收和非破坏性读取信息的光电离来写入和擦除信息。 用于写入和读取信息的装置包括用于多层体积荧光数据存储的共焦检测和球面像差校正。 这些方法还允许多级记录和读出信息以增加存储容量。
摘要:
There is provided a system and method for estimating radiation exposure in real time or in near-real time while a dosimeter is being irradiated. In the preferred arrangement, OSL will be used to calculate estimates of the radiation dose rate, preferably by using comparisons between illumination values measured during and after lighting the dosimeter with a laser light of a predetermined frequency. A first preferred embodiment utilizes quasi-equilibrium OSL intensity with periodic stimulation during continuous irradiation. Another preferred embodiment utilizes the amplitude of the transient OSL signal during periodic stimulation. Another preferred embodiment utilizes the difference between the OSL intensity at the end of one stimulation period and the beginning of the next. Finally, another preferred monitors the time constant for the return of the transient OSL signal to equilibrium, following either a change in dose rate or during a periodic optical stimulation.
摘要:
A method of determining the doses of neutrons, gamma and X-ray photons, beta, alpha and other ionizing radiations using a method of image processing in spatial and frequency domain that produces parameters that are related to the radiation dose absorbed in a luminescent material. Portions of the luminescent material may be covered by different converters to allow for doses of different radiations to be discriminated.
摘要:
A method of determining the doses of neutrons, gamma and X-ray photons, beta, alpha and other ionizing radiations using a method of image processing in spatial and frequency domain that produces parameters that are related to the radiation dose absorbed in a luminescent material. Portions of the luminescent material may be covered by different converters to allow for doses of different radiations to be discriminated.
摘要:
A method of determining the doses of neutrons, gamma and X-ray photons, beta, alpha and other ionizing radiations using a method of image processing in spatial and frequency domain that produces parameters that are related to the radiation dose absorbed in a luminescent material. Portions of the luminescent material may be covered by different converters to allow for doses of different radiations to be discriminated.
摘要:
The instant invention teaches a method of preparing a luminescent detecting material for use in UV dosimetry which utilizes phototransferred luminescence. The detecting material has a set of shallow dosimetry traps for trapping electronic charge carriers, which are thermally released upon heating to a first temperature, and a set of deep traps for trapping electronic charge carriers, which charge carriers are released upon heating to a second temperature. The detecting material is prepared by irradiating the detecting material to fill the shallow and deep traps with charge carriers, heating the material to release charge carriers from the shallow traps, and then cooling the material. When the detecting material is subsequently exposed to ultraviolet light a proportion of charge carriers will be released from the deep traps to be retrapped in the shallow traps, thereby allowing for the measurement of phototransferred luminescence by thermal or optical stimulation.
摘要:
A bimodal method for determining an unknown absorbed dose of radiation. An irradiated material is illuminated with ultraviolet or visible light and the luminescence which is emitted from the material is detected. The illuminating light is pulsed, with pulse widths varying from 1 ns to 500 ms. The luminescence emission from dosimetric traps is monitored after a delay following the end of the illumination pulse. The integrated luminescence signal is related to the initial absorbed dose of radiation and thus may be used to calculate the unknown absorbed dose after calibration. In a first mode, the material is completely detrapped--that is, all the dosimetric traps are emptied by the illumination beam. In a second mode the number of illumination pulses, each being followed by the time delay and by periods during which the luminescence signal is detected, is selected such that only a portion of the radiation-induced luminescence from the material is extracted.