Abstract:
A planar dual mode filter has one or more resonators with L-shaped sections that are oriented back to back to one another. The filter can be constructed by adjusting the size of a gap between the back to back sections and adjusting the offset distance between adjacent sections. Further, coupling between adjacent resonators can be controlled by adjusting a distance between the adjacent resonators. The filters can be co-planar, stripline, suspended microstripline or microstripline. The filters have a film on a substrate with a ground plane. The film can be gold, silver or copper or it can be a ceramic material that becomes superconductive at cryogenic temperatures.
Abstract:
This invention provides novel combline resonators with multiple conductors and multiple dielectrics for compact filters and multiplexers with improved electric response. The novel combline resonator consists of multi-conductors being made up for the simplest case of an inner metallic post, an intermediate conductor, and an enclosure. This structure provides two resonant modes that can be used for realizing compact microwave filters and multiplexers. Such filters offer the low cost, compact size and ease of manufacturing features of traditional combline resonator filters, with additional size reduction due to the fact that a single physical cavity provides two electrical resonators. In addition, the new cavity inherently introduces a transmission zero in the guard-bands enhancing the filter selectivity.
Abstract:
This invention provides novel combline resonators with multiple conductors and multiple dielectrics for compact filters and multiplexers with improved electric response. The novel combline resonator consists of multi-conductors being made up for the simplest case of an inner metallic post, an intermediate conductor, and an enclosure. This structure provides two resonant modes that can be used for realizing compact microwave filters and multiplexers. Such filters offer the low cost, compact size and ease of manufacturing features of traditional combline resonator filters, with additional size reduction due to the fact that a single physical cavity provides two electrical resonators. In addition, the new cavity inherently introduces a transmission zero in the guard-bands enhancing the filter selectivity.
Abstract:
Novel quadruple-mode, dual-mode, and dual-band filters as well multiplexers are presented. A cylindrical dielectric resonator sized appropriately in terms of its diameter D and length L will operate as a quadruple-mode resonator, offering significant size reduction for dielectric resonator filter applications. This is achieved by having two mode pairs of the structure resonate at the same frequency. Single-cavity, quad-mode filters and higher order 4n-pole filters are realizable using this quad-mode cylindrical resonator. The structure of the quad-mode cylinder can be simplified by cutting lengthwise along its central axis to produce a half-cut cylinder suitable for operation in either a dual-mode or a dual-band. Dual-mode, 2n-pole filters are realizable using this half-cut cylinder. Dual-band filters and diplexers are further realizable using the half-cut structure and full cylinder by carrying separate frequency bands on different resonant modes of the structure. These diplexers greatly reduce size and mass of many-channel multiplexers at the system level, as each two channels are overloaded in one physical branch. Full control of center frequencies of resonances, and input and inter-resonator couplings are achievable, allowing realization of microwave filters with different bandwidth, frequency, and Return Loss specifications, as well as advanced filtering functions with prescribed transmission zeros. Spurious performance of the half-cut cylinder can also be improved by cutting one or more through-way slots between opposite surfaces. Size and mass reduction achieved by using the full and half-cut resonators described, provide various levels of size reduction in microwave systems, both filter level, and multiplexer level.
Abstract:
A microwave cavity has a cut resonator therein that is conductor-loaded. Filters made from one or more cavities having cut resonators therein have improved spurious performance over previous filters. A filter can have two conductor loaded resonators in one cavity or a combination of conductor loaded resonators and dielectric resonators in different cavities.
Abstract:
A dielectric resonator is provided having a cavity, a dielectric half disk resonator structure structure, and a support for the half disk resonator structure. The support isolates the dielectric half disk resonator structure from walls of the cavity. A straight edge wall of the dielectric half disk resonator structure couples to a dielectric/air interface within the cavity and forms an approximate magnetic wall. The approximate magnetic wall images the electric field perpendicular to the straight edge wall and supports a single-mode electric field within the half disk resonator structure. Multiple half disk resonator structures may be oriented within the cavity to support other, orthogonal electric fields. Multiple cavities may be coupled to each other through irises formed on the cavity walls.
Abstract:
A non-linear transmission line has high temperature superconductive elements periodically loaded thereon. The elements have non-linear characteristics that provide voltage dependent non-linearity to the transmission line. The line can have a circuit with a first layer and a second layer with the second layer having several interdigital circuits printed thereon. The line can also have a meandering configuration or a spiral configuration.
Abstract:
A high power superconductive circuit has a thin film of high temperature superconductive material on a substrate. The circuit is formed from wafers that are placed into corresponding grooves within the substrate and held in place by adhesive. The grooves can be blind grooves or they can be through holes and the wafers will have a corresponding size and shape. The wafers include a thin film of high temperature superconductive material and can form resonators or an input or output. A circuit constructed in this manner has a relatively high power handling capability compared to circuits created by etching.
Abstract:
A microwave filter has a plurality of resonators and at least one transmission line mounted on a substrate having a ground plane. The filter can have input and output couplings that are transmission lines formed on the substrate or it can have input and output probes. The resonators have one or more gaps extending entirely therethrough, the gaps splitting the resonators into two or more slices. The transmission lines extend into the gap to couple energy into or out of a resonator or between two adjacent resonators. The transmission lines can have tapered ends or can be located off center so that they are closer to one side of a gap than to another side.