摘要:
One embodiment of the present invention provides a system that facilitates a key exchange that operates with a pre-shared secret key and that hides identities of parties involved in the key exchange. The method operates by establishing a negotiated secret key between a first party and a second party by performing communications between the first party and the second party across a network in a manner that does not allow an eavesdropper to determine the negotiated secret key. Next, the system encrypts an identifier for the first party using the negotiated secret key and a group secret key to form an encrypted identifier. This group secret key is known to members of a group, including the first party and the second party, but is kept secret from parties outside of the group. Next, the system sends the encrypted identifier from the first party across the network to the second party. This allows the second party to decrypt the encrypted identifier by using the negotiated secret key and the group secret key, so that the second party can use the identifier to lookup the pre-shared secret key that was previously established between the first party and the second party. This pre-shared secret key is subsequently used in forming at least one subsequent communication between the first party and the second party.
摘要:
A network device dynamically switches between layer 2 (data link) operation and layer 3 (network) operation. When enabled, bridging logic functions as a data link bridge, receiving data link messages from communications links forming part of a single network-layer segment and forwarding the messages to another communications link using layer-2 addresses in the messages. When enabled, routing logic functions as a network router, receiving network layer messages from different network-layer segments and forwarding the messages to other links based on a routing algorithm and the network layer addresses. Selection logic dynamically selects the desired function under different operating conditions. For a transition from router to bridge, multiple network-layer segments are merged into a single bridged network-layer segment, freeing up link numbers for use in configuring addresses for other segments. For the transition from bridge to router, a single bridged network-layer segment is divided into multiple segments having distinct routing identities.
摘要:
A method and apparatus for identifying a data message that is eligible for discard. A beacon node periodically transmits a beacon message to a plurality of client nodes communicatively coupled via a network. Each beacon message includes a beacon sequence number and preferably, the beacon sequence numbers are authenticated by the beacon, node. The client nodes, upon receipt of the beacon messages, verify the authenticity of the respective received beacon sequence numbers and generate a local sequence number derived from the received beacon sequence number. When one client in the session has data to transmit to another client in the session, the sending client assembles a data message and inserts its local sequence number in the data message prior to transmission of the data message to the other client nodes in the session. The client nodes receiving the data message discard the data message if their respective local sequence number at the time of receipt of the data message exceeds the local sequence number inserted in the data message by a predetermined value. In one embodiment, the beacon node generates sequence numbers at a periodic interval P but only transmits 1 out of every m beacon sequence numbers to the client nodes in the session. The client nodes each set a local sequence counter equal to the beacon sequence number upon receipt of the beacon message and thereafter, increment the local sequence counter periodically at interval P. The local sequence counter value is employed as the local sequence number in each client node.
摘要:
One embodiment of the present invention provides a system that performs content screening on a message that is protected by end-to-end encryption. The system operates by receiving an encrypted message and an encrypted message key at a content screener from a firewall, the firewall having previously received the encrypted message and the encrypted message key from a source outside the firewall. The content screener decrypts the encrypted message key to restore the message key, and decrypts the encrypted message with the message key to restore the message. Next, the content screener screens the message to determine whether the message satisfies a screening criterion. If so, the system forwards the message to a destination within the firewall in a secure manner. In one embodiment of the present invention, the system decrypts the encrypted message key by sending the encrypted message key to the destination. Upon receiving the encrypted message key, the destination decrypts the encrypted message key and returns the message key to the content screener in a secure manner.
摘要:
Receiver stations located close together in a computer network dynamically form a multicast repair tree by a plurality of receiver stations choosing a repair head station from among the closely located receiver stations. A receiver station calculates its distance from a repair head station by subtracting the decremented TTL value read from the IP header from the initial value of the TTL parameter carried in field TTL SCOPE of HELLO messages, transmitted by repair head stations. Using a criteria that a closer repair head station is a more optimum repair head station, receiver stations listen to each received HELLO message, calculate the distance to the repair head station, and reaffiliate with the closest repair head station.
摘要:
A system and method for a user to encrypt data in a way that ensures the data cannot be decrypted after a finite period. A number of ephemeral encryption keys are established by a first party, each of which will be destroyed at an associated time in the future (the “expiration time”). A second party selects or requests one of the ephemeral encryption keys for encrypting a message. The first party provides an ephemeral encryption key to the second party. Subsequently, the first party decrypts at least a portion of the message, using an ephemeral decryption key associated with the ephemeral encryption key provided to the second party. At the expiration time, the first party destroys all copies of at least the ephemeral decryption key, thus rendering any messages encrypted using the ephemeral encryption key permanently undecipherable. In an alternative embodiment, a number of ephemeral key servers provide a respective number of ephemeral encryption keys having associated expiration times. A party wishing to transmit an ephemeral message uses the provided ephemeral encryption keys to encrypt at least a portion of the message. The receiver of the message uses at least a subset of the ephemeral key servers to decrypt at least a portion of the encrypted message. At the expiration time(s), at least one of the ephemeral key servers permanently destroys at least one of the decryption keys associated with the provided ephemeral encryption keys.
摘要:
A computer sends a message to each of a number of recipient computers of a computer network by sending the message as a multicast message to near ones of the recipient computers and sending the message as unicast messages to far ones of the recipient computers. The sending computer determines the circumstances under which a combination of multicast and unicast messages are efficient by determining that many recipient computers are near the sending computer and that few recipient computers are far. The sending computer makes such a determination by determining no more than a predetermined number of recipient computers are at least a predetermined distance further from the sending computer than are the others of the recipient messages. The sending computer can also determine that the burden imposed upon the computer network by a multicast message is justified by the need to deliver the message to its intended recipients. For intended recipients which are too far and too few to justify use of a multicast message, unicast messages are sent.
摘要:
A key escrow technique reliably notifies an encrypting principal about escrow authorities requiring access to a secret key used to encrypt information and, further, about how much of that key is required by the authorities. The technique comprises a mechanism for storing escrow instructions pertaining to the authorities' keys in a designated location accessible by the encrypting principal. For example, the designated location may comprise a licensing string of a hardware or software add-on module needed to activate a cryptographic system of a data processing system. The escrow instructions may be further stored in an escrow formation field of a certificate. Here, the certificate may be the encrypting principal's certificate, a recipient principal's certificate and/or any certificate authority's certificate needed for the encrypting principal to verify the recipient principal's certificate.
摘要:
Methods and apparatus for verifying--in a network comprised of LANs and bridges connected to LANs, in which the bridges associate the LANs with LAN numbers--that bridges connected to a given LAN have been configured with the same LAN number for that LAN. A first bridge encodes the LAN number configured for the given LAN into a LAN number verification message and transmits the message to a second bridge connected to the LAN. The second bridge then compares the LAN number encoded in the received LAN number verification message to the LAN number configured for the LAN at the second bridge. A bridge which performs this method includes storage for associating the LANs connected to the bridge with LAN numbers, an encoder for encoding the LAN number for a given LAN into a LAN number verification message, and a transmitter for transmitting the LAN number verification message onto the given LAN.
摘要:
To avoid exponential proliferation of explorer packets through a LAN/Bridge network, each bridge gathers information sufficient to compute routes through the network by sharing routing messages with other bridges. Then, to find a route from a particular source end system to a particular destination end system, a broadcast message identifying the desired source and destination is sent to the bridges. In response, the bridges compute the optimal route to each attached LAN, convert the broadcast message into one or more counterfeit explorer messages by incorporating these routes, and then transmit the counterfeit explorer messages to the LANs for which the incorporated route was computed. The destination end system then receives one or more of the counterfeit explorer messages and responds to the source end system as if the counterfeit explorer message was genuine.