摘要:
An integrate and fire electronic neuron is disclosed. Upon receiving an external spike signal, a digital membrane potential of the electronic neuron is updated based on the external spike signal. The electric potential of the membrane is decayed based on a leak rate. Upon the electric potential of the membrane exceeding a threshold, a spike signal is generated.
摘要:
Embodiments of the invention relate to canonical spiking neurons for spatiotemporal associative memory. An aspect of the invention provides a spatiotemporal associative memory including a plurality of electronic neurons having a layered neural net relationship with directional synaptic connectivity. The plurality of electronic neurons configured to detect the presence of a spatiotemporal pattern in a real-time data stream, and extract the spatiotemporal pattern. The plurality of electronic neurons are further configured to, based on learning rules, store the spatiotemporal pattern in the plurality of electronic neurons, and upon being presented with a version of the spatiotemporal pattern, retrieve the stored spatiotemporal pattern.
摘要:
Embodiments of the invention provide a neural core circuit comprising a synaptic interconnect network including plural electronic synapses for interconnecting one or more source electronic neurons with one or more target electronic neurons. The interconnect network further includes multiple axon paths and multiple dendrite paths. Each synapse is at a cross-point junction of the interconnect network between a dendrite path and an axon path. The core circuit further comprises a routing module maintaining routing information. The routing module routes output from a source electronic neuron to one or more selected axon paths. Each synapse provides a configurable level of signal conduction from an axon path of a source electronic neuron to a dendrite path of a target electronic neuron.
摘要:
Embodiments of the present invention provide a neural module comprising a multilevel hierarchical structure of neural compartments. Each neural compartment is interconnected to one or more neural compartments of a previous level and a next hierarchical level in the hierarchical structure. Each neural compartment integrates spike signals from interconnected neural compartments of a previous hierarchical level, generates a spike signal in response to the integrated spike signals reaching a threshold of said neural compartment, and delivers a generated spike signal to interconnected neural compartments of a next hierarchical level. Each neural compartment is further interconnected to one or more external spiking systems, such that said neural compartment integrates spike signals from interconnected external spiking systems, and delivers a generated spike signal to interconnected external spiking systems. The neural compartments of a neural module include one soma compartment and a plurality of dendrite compartments. Each neural compartment is excitatory or inhibitory.
摘要:
Embodiments of the invention are directed to producing spike-timing dependent plasticity using electronic neurons for computation, and pattern matching tasks such as association and recall. In response to an electronic neuron spiking, a spiking signal is sent from the electronic neuron to each axon driver and each dendrite driver connected to the spiking electronic neuron. Each axon driver receiving the spiking signal sends an axonal signal from the axon driver to a variable state resistor. Each dendrite driver receiving the spiking signal sends a dendritic signal from the dendrite driver to the variable state resistor, wherein the variable state resistor couples the axon driver and the dendrite driver. The combination of the axonal and dendritic signals is capable of increasing or decreasing conductance of the variable state resistor.
摘要:
An event-driven neural network includes a plurality of interconnected core circuits is provided. Each core circuit includes an electronic synapse array has multiple digital synapses interconnecting a plurality of digital electronic neurons. A synapse interconnects an axon of a pre-synaptic neuron with a dendrite of a post-synaptic neuron. A neuron integrates input spikes and generates a spike event in response to the integrated input spikes exceeding a threshold. Each core circuit also has a scheduler that receives a spike event and delivers the spike event to a selected axon in the synapse array based on a schedule for deterministic event delivery.
摘要:
Embodiments of the invention provide a neural network comprising multiple functional neural core circuits, and a dynamically reconfigurable switch interconnect between the functional neural core circuits. The interconnect comprises multiple connectivity neural core circuits. Each functional neural core circuit comprises a first and a second core module. Each core module comprises a plurality of electronic neurons, a plurality of incoming electronic axons, and multiple electronic synapses interconnecting the incoming axons to the neurons. Each neuron has a corresponding outgoing electronic axon. In one embodiment, zero or more sets of connectivity neural core circuits interconnect outgoing axons in a functional neural core circuit to incoming axons in the same functional neural core circuit. In another embodiment, zero or more sets of connectivity neural core circuits interconnect outgoing and incoming axons in a functional neural core circuit to incoming and outgoing axons in a different functional neural core circuit, respectively.
摘要:
Embodiments of the invention relate to providing transposable access to a synapse array using a recursive array layout. One embodiment comprises maintaining synaptic weights for multiple synapses connecting multiple axons and multiple neurons, wherein the synaptic weights are maintained based on a recursive array layout. The recursive array layout facilitates transposable access to the synaptic weights. A neuronal spike event between an axon and a neuron is communicated via a corresponding connecting synapse by accessing the synaptic weight of the corresponding connecting synapse in the recursive array layout.
摘要:
Embodiments of the invention relate to a globally asynchronous and locally synchronous neuromorphic network. One embodiment comprises generating a synchronization signal that is distributed to a plurality of neural core circuits. In response to the synchronization signal, in at least one core circuit, incoming spike events maintained by said at least one core circuit are processed to generate an outgoing spike event. Spike events are asynchronously communicated between the core circuits via a routing fabric comprising multiple asynchronous routers.
摘要:
Embodiments of the invention relate to a multiplexed neural core circuit. One embodiment comprises a neural core circuit including a memory device that maintains neuronal attributes for multiple neurons. The memory device has multiple entries. Each entry maintains neuronal attributes for a corresponding neuron. The core circuit further comprises a controller for managing the memory device and processing neuronal firing events targeting each neuron. The controller multiplexes computation and control logic for the neurons. In response to neuronal firing events targeting one of the neurons, the controller retrieves neuronal attributes for the target neuron from a corresponding entry of the memory device, and integrates the firing events based on the retrieved neuronal attributes to generate a firing event for the target neuron.