摘要:
Embodiments of the invention provide a neural core circuit comprising a synaptic interconnect network including plural electronic synapses for interconnecting one or more source electronic neurons with one or more target electronic neurons. The interconnect network further includes multiple axon paths and multiple dendrite paths. Each synapse is at a cross-point junction of the interconnect network between a dendrite path and an axon path. The core circuit further comprises a routing module maintaining routing information. The routing module routes output from a source electronic neuron to one or more selected axon paths. Each synapse provides a configurable level of signal conduction from an axon path of a source electronic neuron to a dendrite path of a target electronic neuron.
摘要:
An event-driven neural network includes a plurality of interconnected core circuits is provided. Each core circuit includes an electronic synapse array has multiple digital synapses interconnecting a plurality of digital electronic neurons. A synapse interconnects an axon of a pre-synaptic neuron with a dendrite of a post-synaptic neuron. A neuron integrates input spikes and generates a spike event in response to the integrated input spikes exceeding a threshold. Each core circuit also has a scheduler that receives a spike event and delivers the spike event to a selected axon in the synapse array based on a schedule for deterministic event delivery.
摘要:
Embodiments of the invention provide a neural network comprising multiple functional neural core circuits, and a dynamically reconfigurable switch interconnect between the functional neural core circuits. The interconnect comprises multiple connectivity neural core circuits. Each functional neural core circuit comprises a first and a second core module. Each core module comprises a plurality of electronic neurons, a plurality of incoming electronic axons, and multiple electronic synapses interconnecting the incoming axons to the neurons. Each neuron has a corresponding outgoing electronic axon. In one embodiment, zero or more sets of connectivity neural core circuits interconnect outgoing axons in a functional neural core circuit to incoming axons in the same functional neural core circuit. In another embodiment, zero or more sets of connectivity neural core circuits interconnect outgoing and incoming axons in a functional neural core circuit to incoming and outgoing axons in a different functional neural core circuit, respectively.
摘要:
Embodiments of the invention relate to providing transposable access to a synapse array using a recursive array layout. One embodiment comprises maintaining synaptic weights for multiple synapses connecting multiple axons and multiple neurons, wherein the synaptic weights are maintained based on a recursive array layout. The recursive array layout facilitates transposable access to the synaptic weights. A neuronal spike event between an axon and a neuron is communicated via a corresponding connecting synapse by accessing the synaptic weight of the corresponding connecting synapse in the recursive array layout.
摘要:
Embodiments of the invention relate to a globally asynchronous and locally synchronous neuromorphic network. One embodiment comprises generating a synchronization signal that is distributed to a plurality of neural core circuits. In response to the synchronization signal, in at least one core circuit, incoming spike events maintained by said at least one core circuit are processed to generate an outgoing spike event. Spike events are asynchronously communicated between the core circuits via a routing fabric comprising multiple asynchronous routers.
摘要:
Embodiments of the invention relate to a multiplexed neural core circuit. One embodiment comprises a neural core circuit including a memory device that maintains neuronal attributes for multiple neurons. The memory device has multiple entries. Each entry maintains neuronal attributes for a corresponding neuron. The core circuit further comprises a controller for managing the memory device and processing neuronal firing events targeting each neuron. The controller multiplexes computation and control logic for the neurons. In response to neuronal firing events targeting one of the neurons, the controller retrieves neuronal attributes for the target neuron from a corresponding entry of the memory device, and integrates the firing events based on the retrieved neuronal attributes to generate a firing event for the target neuron.
摘要:
Embodiments of the invention relate to a scalable neural hardware for the noisy-OR model of Bayesian networks. One embodiment comprises a neural core circuit including a pseudo-random number generator for generating random numbers. The neural core circuit further comprises a plurality of incoming electronic axons, a plurality of neural modules, and a plurality of electronic synapses interconnecting the axons to the neural modules. Each synapse interconnects an axon with a neural module. Each neural module receives incoming spikes from interconnected axons. Each neural module represents a noisy-OR gate. Each neural module spikes probabilistically based on at least one random number generated by the pseudo-random number generator unit.
摘要:
Embodiments of the invention provide a neural network comprising multiple functional neural core circuits, and a dynamically reconfigurable switch interconnect between the functional neural core circuits. The interconnect comprises multiple connectivity neural core circuits. Each functional neural core circuit comprises a first and a second core module. Each core module comprises a plurality of electronic neurons, a plurality of incoming electronic axons, and multiple electronic synapses interconnecting the incoming axons to the neurons. Each neuron has a corresponding outgoing electronic axon. In one embodiment, zero or more sets of connectivity neural core circuits interconnect outgoing axons in a functional neural core circuit to incoming axons in the same functional neural core circuit. In another embodiment, zero or more sets of connectivity neural core circuits interconnect outgoing and incoming axons in a functional neural core circuit to incoming and outgoing axons in a different functional neural core circuit, respectively.
摘要:
Embodiments of the invention relate to distributed simulation frameworks that provide reciprocal communication. One embodiment comprises interconnecting neuron groups on different processors via a plurality of reciprocal communication pathways, and facilitating the exchange of reciprocal spiking communication between two different processors using at least one Ineuron module. Each processor includes at least one neuron group. Each neuron group includes at least one electronic neuron.
摘要:
Embodiments of the invention provide electronic synapse devices for reinforcement learning. An electronic synapse is configured for interconnecting a pre-synaptic electronic neuron and a post-synaptic electronic neuron. The electronic synapse comprises memory elements configured for storing a state of the electronic synapse and storing meta information for updating the state of the electronic synapse. The electronic synapse further comprises an update module configured for updating the state of the electronic synapse based on the meta information in response to an update signal for reinforcement learning. The update module is configured for updating the state of the electronic synapse based on the meta information, in response to a delayed update signal for reinforcement learning based on a learning rule.