摘要:
Methods for determining a surface voltage of an insulating film are provided. One method includes depositing a charge on an upper surface of the insulating film and measuring a current to the wafer during deposition. The method also includes determining the surface voltage of the insulating film from the current. In this manner, the surface voltage is not measured, but is determined from a measured current. Another embodiment may include measuring a second current to the wafer during a high current mode deposition of a charge on the film and determining a second surface voltage of the film from the second current. This method may be repeated until a Q-V sweep is measured. An additional embodiment may include altering a control voltage during deposition of the charge such that a current to the wafer is substantially constant over time and determining charge vs. voltage data for the insulating film.
摘要:
The present invention provides a high-speed Quantum Efficiency (QE) measurement device that includes at least one device under test (DUT), at least one conditioned light source with a less than 50 nm bandwidth, where a portion of the conditioned light source is monitored. Delivery optics are provided to direct the conditioned light to the DUT, a controller drives the conditioned light source in a time dependent operation, and at least one reflectance measurement assembly receives a portion of the conditioned light reflected from the DUT. A time-resolved measurement device includes a current measurement device and/or a voltage measurement device disposed to resolve a current and/or voltage generated in the DUT by each conditioned light source, where a sufficiently programmed computer determines and outputs a QE value for each DUT according to an incident intensity of at least one wavelength of from the conditioned light source and the time-resolved measurement.
摘要:
The current invention provides a shunt defect detection device that includes a device under test (DUT) that is fixedly held by a thermally isolating mount, a power source disposed to provide a directional bias condition to the DUT, a probe disposed to provide a localized power to the DUT from the power source, an emission detector disposed to measure a temporal emission from the DUT when in the directional bias condition, where the measured temporal emission is output as temporal data from the emission detector to a suitably programmed computer that uses the temporal data to determine a heating rate of the DUT and is disposed to estimate an overheat risk level of the DUT, where an output from the computer designates the DUT a pass status, an uncertain status, a fail status or a process to bin status according to the overheat risk level.
摘要:
The present invention provides a high-speed Quantum Efficiency (QE) measurement device that includes at least one device under test (DUT), at least one conditioned light source with a less than 50 nm bandwidth, where a portion of the conditioned light source is monitored. Delivery optics are provided to direct the conditioned light to the DUT, a controller drives the conditioned light source in a time dependent operation, and at least one reflectance measurement assembly receives a portion of the conditioned light reflected from the DUT. A time-resolved measurement device includes a current measurement device and/or a voltage measurement device disposed to resolve a current and/or voltage generated in the DUT by each conditioned light source, where a sufficiently programmed computer determines and outputs a QE value for each DUT according to an incident intensity of at least one wavelength of from the conditioned light source and the time-resolved measurement.
摘要:
The current invention provides a shunt defect detection device that includes a device under test (DUT) that is fixedly held by a thermally isolating mount, a power source disposed to provide a directional bias condition to the DUT, a probe disposed to provide a localized power to the DUT from the power source, an emission detector disposed to measure a temporal emission from the DUT when in the directional bias condition, where the measured temporal emission is output as temporal data from the emission detector to a suitably programmed computer that uses the temporal data to determine a heating rate of the DUT and is disposed to estimate an overheat risk level of the DUT, where an output from the computer designates the DUT a pass status, an uncertain status, a fail status or a process to bin status according to the overheat risk level.