摘要:
Aspects include API interfaces for interfacing shaders with other components and/or code modules that provide ray tracing functionality. For example, API calls may allow direct contribution of light energy to a buffer for an identified pixel, and allow emission of new rays for intersection testing alone or in bundles. The API also can provide a mechanism for associating arbitrary data with ray definition data defining a ray to be tested through a shader using the emit ray call. The arbitrary data is provided to a shader associated with an object that is identified subsequently as having been intersected by the ray. The data can include code, or a pointer to code, that can be used by or run after the shader. The data also can be propagated through a series of shaders, and associated with rays instantiated in each shader. Recursive shaders can be recompiled as non-recursive shaders interfacing with API semantics according to the description.
摘要:
For ray tracing scenes composed of primitives, systems and methods can traverse rays through an acceleration structure. The traversal can be implemented by concurrently testing a plurality of nodes of the acceleration structure for intersection with a sequence of one or more rays. Such testing can occur in a plurality of test cells. Leaf nodes of the acceleration structure can bound primitives, and a sequence primitives can be tested concurrently for intersection in the test cells against a plurality of rays that have intersected a given leaf node. Intersection testing of a particular leaf node can be deferred until a sufficient quantity of rays have been collected for that node.
摘要:
Ray tracing, and more generally, graphics operations taking place in a 3-D scene, involve a plurality of constituent graphics operations. Scheduling of graphics operations for concurrent execution on a computer may increase throughput. In aspects herein, constituent graphics operations are scheduled in groups, having members selected according to disclosed aspects. Processing for specific graphics operations in a group can be deferred if all the operations in the group cannot be further tested concurrently. Graphics operations that have been deferred are recombined into two or more different groups and ultimately complete processing, through a required number of iterations of such process. In one application, the performance of the graphics operations perform a search in which respective 1:1 matches between different types of geometric shapes involved in the 3-D scene are identified. For example, closest intersections between rays and scene geometry can be identified by processing scheduled according to disclosed aspects.
摘要:
For ray tracing scenes composed of primitives, systems and methods can traverse rays through an acceleration structure. The traversal can be implemented by concurrently testing a plurality of nodes of the acceleration structure for intersection with a sequence of one or more rays. Such testing can occur in a plurality of test cells. Leaf nodes of the acceleration structure can bound primitives, and a sequence primitives can be tested concurrently for intersection in the test cells against a plurality of rays that have intersected a given leaf node. Intersection testing of a particular leaf node can be deferred until a sufficient quantity of rays have been collected for that node.
摘要:
Aspects can be for ray tracing of 3-D scenes, and include dynamically controlling a population of rays being stored in a memory, to keep the population within a target, a memory footprint or other resource usage specification. An example includes controlling the population by examining indicia associated with rays returning from intersection testing, to be shaded, the indicia correlated with behavior of shaders to be run for those rays, such that population control selects, or reorders rays for shading, to prioritize shading of rays whose shaders are expected to produce fewer rays. The indicia can include a respective weight for each ray. In an example, analyzer modules examine hints associated with shaders bound to intersected primitives. Population control aspects can influence ray diversity in memory, including encouraging a varying diversity pattern as rendering of a given scene or frame progresses, based on system resource indicia, rendering metrics and so on.
摘要:
Ray tracing scenes is accomplished using a plurality of intersection testing resources coupled with a plurality of shading resources, communicative in the aggregate through links/queues. A queue from testing to shading comprises respective ray/primitive intersection indications, comprising a ray identifier. A queue from shading to testing comprises identifiers of new rays to be tested, wherein data defining the rays is separately stored in memories distributed among the intersection testing resources. Ray definition data can be retained in distributed memories until rays complete intersection testing, and be selected for testing multiple times based on ray identifier. A structure of acceleration shapes can be used. Packets of ray identifiers and shape data can be passed among the intersection testing resources, and each resource can test rays identified in the packet, and for which definition data is present in its memory. Test results for acceleration shapes are used to collect rays against acceleration shapes, and closest detection ray/primitive intersections are indicated by sending ray identifiers to shading resources.
摘要:
For ray tracing scenes composed of primitives, systems and methods accelerate ray/primitive intersection identification by testing rays against elements of geometry acceleration data (GAD) in a parallelized intersection testing resource. Groups of rays can be described as shared attribute information and individual ray data for efficient ray data transfer between a host processor and the testing resource. The host processor also hosts shading and/or management processes controlling the testing resource and adapting the ray tracing, as necessary or desirable, to meet criteria, while reducing degradation of rendering quality. The GAD elements can be arranged in a graph, and rays can be collected into collections based on whether a ray intersects a given element. When a collection is deemed ready for further testing, it is tested for intersection with GAD elements connected, in the graph, to the given element. The graph can be hierarchical such that rays of a given collection are tested against children of the GAD element associated with the given collection.
摘要:
Aspects include API interfaces for interfacing shaders with other components and/or code modules that provide ray tracing functionality. For example, API calls may allow direct contribution of light energy to a buffer for an identified pixel, and allow emission of new rays for intersection testing alone or in bundles. The API also can provide a mechanism for associating arbitrary data with ray definition data defining a ray to be tested through a shader using the emit ray call. The arbitrary data is provided to a shader associated with an object that is identified subsequently as having been intersected by the ray. The data can include code, or a pointer to code, that can be used by or run after the shader. The data also can be propagated through a series of shaders, and associated with rays instantiated in each shader. Recursive shaders can be recompiled as non-recursive shaders interfacing with API semantics according to the description.
摘要:
Aspects comprise systems implementing 3-D graphics processing functionality in a multiprocessing system. Control flow structures are used in scheduling instances of computation in the multiprocessing system, where different points in the control flow structure serve as points where deferral of some instances of computation can be performed in favor of scheduling other instances of computation. In some examples, the control flow structure identifies particular tasks, such as intersection testing of a particular portion of an acceleration structure, and a particular element of shading code. In some examples, the aspects are used in 3-D graphics processing systems that can perform ray tracing based rendering.
摘要:
For ray tracing scenes composed of primitives, systems and methods accelerate ray/primitive intersection identification by testing rays against elements of geometry acceleration data (GAD) in a parallelized intersection testing resource. Groups of rays can be described as shared attribute information and individual ray data for efficient ray data transfer between a host processor and the testing resource. The host processor also hosts shading and/or management processes controlling the testing resource and adapting the ray tracing, as necessary or desirable, to meet criteria, while reducing degradation of rendering quality. The GAD elements can be arranged in a graph, and rays can be collected into collections based on whether a ray intersects a given element. When a collection is deemed ready for further testing, it is tested for intersection with GAD elements connected, in the graph, to the given element. The graph can be hierarchical such that rays of a given collection are tested against children of the GAD element associated with the given collection.