SYSTEM AND METHOD FOR REAL-TIME SOUND SIMULATION

    公开(公告)号:US20230342518A1

    公开(公告)日:2023-10-26

    申请号:US18256030

    申请日:2023-03-08

    CPC classification number: G06F30/20 G06F30/13

    Abstract: The present invention relates to the real-time simulation of sound in three-dimensional virtual environments. In particular, a geometric method based on the principles of acoustic radiosity determines the room impulse responses of a virtual environment with arbitrary polygonal surfaces. The complexity of the method is of the order of the square of the number of patches that define the virtual environment. The room impulse responses are convolved with an audio signal and output through a speaker to simulate reverberation within the virtual environment, which corresponds to a physical environment.

    Predicting spherical irradiance for volume disinfection

    公开(公告)号:US11590252B2

    公开(公告)日:2023-02-28

    申请号:US17632442

    申请日:2021-07-08

    Abstract: Given the complexity of architectural spaces and the need to calculate spherical irradiances, it is difficult to determine how much ultraviolet radiation is necessary to adequately kill airborne pathogens. An interior environment with luminaires is modeled. Spherical irradiance meters are positioned in the model and the direct and indirect spherical irradiance is calculated for each sensor. From this, an irradiance field is interpolated for a volume of interest, and using known fluence response values for killing pathogens, a reduction in the pathogens is predicted. Based on the predicted reduction, spaces are built accordingly, and ultraviolet luminaires are installed and controlled.

    FIBER-OPTIC SHEET LIGHTING
    23.
    发明申请

    公开(公告)号:US20220287247A1

    公开(公告)日:2022-09-15

    申请号:US17824810

    申请日:2022-05-25

    Abstract: Laser light is coupled to optical fibers arranged in a sheet, which may be in the form of netting, mesh or fabric. Scattering centers or bends in the optical fibers allow the coupled light to escape from the sides of the fibers. Depending on the selection of wavelengths for the lasers, the resulting luminous sheet may be used for illumination of crops grown in vertical farms. The laser wavelengths excite plant photopigments for predetermined physiological responses, and the light source intensities may be temporally modulated to maximize photosynthesis and control photomorphogenesis responses. Each laser may be independently controlled, and at least one laser may emit ultraviolet-C radiation. The luminous sheet may be used for purification of air flowing through an air duct.

    Predicting and measuring melanopic dose

    公开(公告)号:US11287321B2

    公开(公告)日:2022-03-29

    申请号:US17419868

    申请日:2021-03-22

    Abstract: Melanopic dose rate and dose are calculated in a virtual environment. A computer generated model of an actual or planned building is used as the virtual environment. Indirect and direct spherical irradiances are calculated using convex polyhedra throughout the virtual environment, and each is multiplied by a melanopic conversion factor. The two are added, then adjusted for a human's angular responsivity and age. Building design features or lighting devices may be adjusted to provide a required melanopic dose rate. A camera is used to capture a panoramic image, which is calibrated to tristimulus values, and used with the spectral power distribution of the light sources to derive the melanopic dose rate.

    Diffused fiber-optic horticultural lighting

    公开(公告)号:US11122747B2

    公开(公告)日:2021-09-21

    申请号:US17177579

    申请日:2021-02-17

    Abstract: Laser light emanates from optical components that are mounted on a substrate, each optical component being coupled to an optical fiber that delivers laser radiation combined from multiple lasers. A linear or elliptical holographic diffuser is located to diffuse the light emanating from the optical components. The laser wavelengths excite plant photopigments for predetermined physiological responses, and the light source intensities may be temporally modulated to maximize photosynthesis and control photomorphogenesis responses. Each laser is independently controlled.

    System and method of classifying spectral power distributions

    公开(公告)号:US11085819B2

    公开(公告)日:2021-08-10

    申请号:US17015496

    申请日:2020-09-09

    Abstract: A means to automate, using fuzzy logic, the classification of spectral power distributions of optical radiation for lighting systems, and more particularly horticultural lighting systems, is presented. After inputting the spectral power distribution of optical radiation from one or more light sources, radial basis function weights for the spectral power distribution are determined and fuzzified preparatory to fuzzy logic classification. Fuzzy if-then rules are then applied, and an aggregate of the rule votes from the fuzzy if-then rules applied is used to classify the spectral power distribution. The system utilizes a spectral sensor, a fuzzifier module, a fuzzy rule database, fuzzy rule engine, an output fuzzifier module, and a means of displaying the spectral power distribution classification.

    Fiber-optic sheet lighting
    28.
    发明授权

    公开(公告)号:US11606914B2

    公开(公告)日:2023-03-21

    申请号:US17824810

    申请日:2022-05-25

    Abstract: Laser light is coupled to optical fibers arranged in a sheet, which may be in the form of netting, mesh or fabric. Scattering centers or bends in the optical fibers allow the coupled light to escape from the sides of the fibers. Depending on the selection of wavelengths for the lasers, the resulting luminous sheet may be used for illumination of crops grown in vertical farms. The laser wavelengths excite plant photopigments for predetermined physiological responses, and the light source intensities may be temporally modulated to maximize photosynthesis and control photomorphogenesis responses. Each laser may be independently controlled, and at least one laser may emit ultraviolet-C radiation. The luminous sheet may be used for purification of air flowing through an air duct.

    Lighting for root growth
    29.
    发明授权

    公开(公告)号:US11470703B2

    公开(公告)日:2022-10-11

    申请号:US17687378

    申请日:2022-03-04

    Abstract: A biological lighting system to provide temporally- and spatially-modulated photon flux output and spectral power distributions to plants on a circadian and circannual basis, or circadian and life cycle basis, to maximize effective and efficient growth in a horticultural setting. The photon flux or irradiance output and the spectral power distribution are modulated to match circadian and circannual rhythms, with individual or multiple luminaires controlled through one or more controllers. Different lighting spectra can be employed depending on the direction of illumination. The photon flux or irradiance output and the spectral power distribution may be set as best suited for any particular plant species, and the system is also useful for raising animals.

    Diffused fiber-optic horticultural lighting

    公开(公告)号:US11382280B1

    公开(公告)日:2022-07-12

    申请号:US17690683

    申请日:2022-03-09

    Abstract: Laser light emanates from optical components that are mounted on a substrate, each optical component being coupled to an optical fiber that delivers laser radiation combined from multiple lasers. A linear or elliptical holographic diffuser is located to diffuse the light emanating from the optical components. The laser wavelengths excite plant photopigments for predetermined physiological responses, and the light source intensities may be temporally modulated to maximize photosynthesis and control photomorphogenesis responses. Each laser is independently controlled. At least one laser emits ultraviolet-C radiation.

Patent Agency Ranking