Abstract:
An organic light emitting diode display that maintains a luminance distribution characteristic of each pixel at the side substantially similar to a luminance distribution characteristic of each pixel at the front of the OLED display by improving a twist of a lateral color with respect to a front color. The organic light emitting diode display includes a substrate, a driving wire disposed on the substrate, a color filter disposed on the driving wire. The color filter includes a blue color filter, a red color filter, and a green color filter formed on the driving wire; and an organic light emitting diode disposed on the color filter, where a width of the blue color filter is greater than a width of the red color filter or the green color filter.
Abstract:
Disclosed is an organic white light emitting display apparatus. The organic white light emitting device includes a first substrate including a first sub-pixel area, a second sub-pixel area, a third sub-pixel area, and an organic light emitting device (OLED) that includes a first electrode, a second electrode, and an organic white light emitting layer interposed between the first and second electrodes, and emits whit light for respective sub-pixel areas, a second substrate including first, second, and third color filters of different colors formed on positions corresponding to the respective sub-pixel areas, the second substrate being arranged to face the first substrate, and a partition wall that is extended to an area between neighboring color filters among the color filters and partitions the sub-pixel areas, the partition wall being formed on the first substrate.
Abstract:
An organic light emitting display device includes a substrate, a plurality of organic light emitting elements disposed on the substrate, the plurality of organic light emitting elements including a first organic light emitting element, a second organic light emitting element and a third organic light emitting element, an encapsulating member encapsulating the plurality of organic light emitting elements, a graded functional layers disposed on the encapsulating member, the graded functional layers including convex lenses disposed on pixel regions, and a black matrix disposed on the graded functional layer.
Abstract:
In a stereoscopic image conversion panel and a stereoscopic image display apparatus, the stereoscopic display panel includes a first lens substrate, a second lens substrate, a stereoscopic image lens part and a lens liquid crystal layer. The stereoscopic image lens part is disposed between the first and second substrates, and includes a main lens and sub-lenses with a concave shape. At least one sub-lens is disposed at opposite edge portions of the main lens. The lens liquid crystal layer is received by the main lens and the sub-lenses, is disposed between the first and second lens substrates, and includes liquid crystal molecules having an anisotropic refractive index. The lens liquid crystal layer refracts a polarized light at an interface between the lens liquid crystal layer and the stereoscopic lens part, to convert a flat image into a stereoscopic image. Therefore, the thickness of the stereoscopic image panel can be reduced.