Abstract:
Disclosed are an organic light emitting diode display and a manufacturing method thereof, and more particularly, an organic light emitting diode display capable of minimizing resistance increase of a second electrode and improving light extraction efficiency at the same time by forming a separate reflector, and a manufacturing method thereof.
Abstract:
An organic light emitting diode display and a manufacturing method thereof, and more particularly, an organic light emitting diode display having improved light extraction efficiency by forming both a first electrode and a second electrode as reflective electrodes to guide generated light to the side of a pixel, and a manufacturing method thereof.
Abstract:
An organic light emitting diode display includes: a substrate, an insulating layer on the substrate; a plurality of pixel electrodes on the insulating layer; a pixel defining layer on the insulating layer overlapping with an end of at least one of the pixel electrodes and defining an emission region and a non-emission region; an organic emission layer on the pixel electrodes; and a common electrode on the organic emission layer, wherein the insulating layer has a plurality of concave portions in the non-emission region adjacent corresponding ones of the pixel electrodes, wherein each of the concave portions has a bottom portion and an inclined portion, and wherein a reflective surface is on at least one of the inclined portions.
Abstract:
An organic light emitting diode display and a manufacturing method thereof, and more particularly, an organic light emitting diode display having improved light extraction efficiency by forming both a first electrode and a second electrode as reflective electrodes to guide generated light to the side of a pixel, and a manufacturing method thereof.
Abstract:
Disclosed are an organic light emitting diode display and a manufacturing method thereof, and more particularly, an organic light emitting diode display capable of minimizing resistance increase of a second electrode and improving light extraction efficiency at the same time by forming a separate reflector, and a manufacturing method thereof
Abstract:
The present invention relates to a backlight unit. The backlight unit includes a light source unit, a power supply unit, and a power transmitting wire. The light source includes at least one light source. The power supply circuit is configured to supply a power voltage to the light source unit. The power transmitting wire is configured to transmit the power voltage. The power transmitting wire includes at least two circuit patterns.
Abstract:
Disclosed is an organic white light emitting display apparatus. The organic white light emitting device includes a first substrate including a first sub-pixel area, a second sub-pixel area, a third sub-pixel area, and an organic light emitting device (OLED) that includes a first electrode, a second electrode, and an organic white light emitting layer interposed between the first and second electrodes, and emits whit light for respective sub-pixel areas, a second substrate including first, second, and third color filters of different colors formed on positions corresponding to the respective sub-pixel areas, the second substrate being arranged to face the first substrate, and a partition wall that is extended to an area between neighboring color filters among the color filters and partitions the sub-pixel areas, the partition wall being formed on the first substrate.
Abstract:
An organic light emitting diode (OLED) display includes a substrate, a light path guide layer formed on the substrate and having an inclined side wall, an organic light emitting diode (OLED) formed on the substrate and the light path guide layer, and a phase transition layer formed on the OLED and formed so as to correspond to the inclined side wall. Therefore, in the OLED display, the phase transition layer is formed in the light path guide layer so that it is possible to minimize external light reflectance increased by the light path guide layer.
Abstract:
An OLED display includes: a substrate; a thin film transistor on the substrate; a first insulation layer on the thin film transistor; a second insulation layer on the first insulation layer, the second insulation layer having a first opening exposing a portion of the first insulation layer; a first electrode electrically connected with the thin film transistor and contacting the second insulation and contacting the first insulation layer through the first opening; a pixel defining layer disposed on the first electrode and having a second opening exposing a portion of the first electrode in a region corresponding to the first opening, the second opening being smaller than the first opening; an organic emission layer on the first electrode in a region corresponding to the second opening; and a second electrode on the organic emission layer in a region corresponding to the second opening.
Abstract:
Disclosed are an organic light emitting diode display and a manufacturing method thereof, and more particularly, an organic light emitting diode display capable of minimizing resistance increase of a second electrode and improving light extraction efficiency at the same time by forming a separate reflector, and a manufacturing method thereof.