Abstract:
An exemplary embodiment provides a manufacturing method of a display device as follows. A thin film transistor is formed on a substrate. A pixel electrode connected to the thin film transistor is formed. A first barrier layer is formed on the pixel electrode. A sacrificial layer is formed on the first barrier layer. A second barrier layer is formed on the sacrificial layer. A common electrode is formed on the sacrificial layer. A roof layer is formed on the common electrode. The common electrode and the roof layer are patterned to expose a portion of the sacrificial layer. The sacrificial layer is removed to form a microcavity between the pixel electrode and the common electrode. The first barrier layer and the second barrier layer are removed. A liquid crystal material is injected inside the microcavity to form a liquid crystal layer. An encapsulation layer is formed to cover a portion where the microcavity is exposed to seal the microcavity.
Abstract:
A device for monitoring a liquid crystal display includes: a substrate including a display region and a non-display region disposed at an edge of the display region. The display region includes: a thin film transistor disposed on the substrate, a pixel electrode disposed on the substrate and connected to the thin film transistor, a first sacrificial layer disposed on the pixel electrode, and a roof layer disposed on the sacrificial layer. The non-display region includes: a second sacrificial layer disposed on the substrate, and the roof layer disposed on the second sacrificial layer. The first sacrificial layer has a first longitudinal dimension and a first cross-sectional area, and the second sacrificial layer has a second longitudinal dimension and a second cross-sectional area. The first cross-sectional area is the same as the second cross-sectional area. The second longitudinal dimension is greater than the first longitudinal dimension.