Abstract:
A display device includes a substrate, a display structure, and a conductive line. The substrate includes a display region having a plurality of pixel regions and a peripheral region surrounding the display region. Each of the pixel regions has sub-pixel regions and a transparent region. The display structure is disposed in each of the pixel regions of the display region. The conductive line is disposed in the peripheral region, and is electrically connected to the display structure. The conductive line has at least one opening.
Abstract:
An organic light emitting display device includes a substrate, a light emitting structure, and a reflective metal layer. The substrate includes a pixel region and a peripheral region. The light emitting structure is disposed on the substrate. The reflective metal layer is disposed between the substrate and the light emitting structure. The reflective metal layer includes a plurality of nanowires and a plurality of openings that is defined by the nanowires.
Abstract:
An organic light emitting display device may include a substrate and a plurality of pixels. The plurality of pixels may be arranged on the substrate, and each of the pixels may include an opaque region and a transparent region. Here, the opaque region may include a first sub-pixel region in which a first sub-pixel is disposed, a second sub-pixel region in which a second sub-pixel is disposed, a third sub-pixel region in which a third sub-pixel is disposed, and a wiring region in which a plurality of wirings is arranged. A sub-pixel region among the first sub-pixel region, the second sub-pixel region, and the third sub-pixel region is overlapped with the wiring region.
Abstract:
A method of manufacturing a display device is disclosed. In one aspect, a display device comprises a lower substrate, a light-emitting element formed on the lower substrate and comprising a plurality of pixels, an upper substrate disposed on the light-emitting element with a gap therebetween sealed with a sealant. In addition, the device includes a filler filling the gap between the light-emitting element and the upper substrate, and a light-absorbing material formed between the lower substrate and the upper substrate and selectively absorbing light of a certain wavelength range.
Abstract:
An organic light emitting diode includes a first electrode including a first electrode including a reflective metal layer formed of a light-reflective metal, an upper transparent conductive layer positioned on the reflective metal layer, and a protective layer positioned on the upper transparent conductive layer; an organic emission layer positioned on the first electrode; and a second electrode positioned on the organic emission layer, wherein the upper transparent conductive layer is amorphous.
Abstract:
An organic light emitting display apparatus, including a first electrode; a second electrode on the first electrode, the second electrode including silver and magnesium; an organic emission layer between the first electrode and the second electrode; a metal layer between the organic emission layer and the second electrode; and a barrier layer between the organic emission layer and the second electrode.
Abstract:
An organic light-emitting display apparatus includes a first substrate including a display unit having a light-emitting region and a non-light-emitting region, a second substrate parallel to the first substrate, and a reflective member on a surface of the second substrate that faces the first substrate, the reflective member corresponding to the non-light-emitting region of the display unit and being configured to sense touch, and the reflective member including a plurality of first pattern parts electrically connected along a first direction and a plurality of second pattern parts electrically connected along a second direction.
Abstract:
A display apparatus may include a first substrate defined by a pixel region and a transmitting region adjacent to the pixel region, the pixel region emitting light in a first direction and the transmitting region transmitting external light; a second substrate that faces the first substrate and seals pixels defined on the first substrate; an optical filter arranged on a first side of the display apparatus through which light is emitted, the optical filter being configured to transmit circularly polarized light that rotates in a predetermined direction; and an optical reflectance conversion device arranged on a second side of the display apparatus, opposite the first side, the optical reflectance conversion device being configured to change a reflectance of the external light according to modes of operation of the display apparatus.
Abstract:
A donor substrate includes a base substrate; a light reflection layer disposed on the base substrate and overlapped with a portion of the base substrate, a heat blocking pattern disposed on the light reflection layer, overlapped with the light reflection layer, and including a plurality of air holes; a light-to-heat conversion layer disposed on the base substrate; and a transfer layer disposed on the light-to-heat conversion layer.