Abstract:
A mirror display apparatus includes a display unit, a thin film encapsulation layer, a plurality of mirror patterns, a protection layer and a refractive index matching layer. The display unit is disposed on a substrate. The thin film encapsulation layer extends continuously on a surface of the display unit. The mirror patterns are arranged on the thin film encapsulation layer. The protection layer is disposed on surfaces of the mirror patterns. The refractive index matching layer is interposed between the thin film encapsulation layer and the protection layer, and the refractive index matching layer fills regions between neighboring ones of the mirror patterns. A refractive index of the refractive index matching layer is less than a refractive index of the thin film encapsulation layer, and the refractive index of the refractive index matching layer is greater than a refractive index of the protection layer.
Abstract:
An organic light emitting diode includes: a first electrode; a second electrode facing the first electrode; a light emission layer between the first electrode and the second electrode; an electron injection layer between the second electrode and the light emission layer; and a buffer layer between the electron injection layer and the second electrode, where the electron injection layer includes a dipolar material and a first metal, and the buffer layer includes a metal having a work function of 4.0 eV or less.
Abstract:
An organic light emitting display apparatus, including a first electrode; a second electrode on the first electrode, the second electrode including silver and magnesium; an organic emission layer between the first electrode and the second electrode; a metal layer between the organic emission layer and the second electrode; and a barrier layer between the organic emission layer and the second electrode.
Abstract:
An organic light-emitting display device includes a first substrate having transmitting regions and pixel regions separated from each other by the transmitting regions, a plurality of thin film transistors on the first substrate in the pixel regions, a passivation layer covering the plurality of thin film transistors, a plurality of pixel electrodes on the passivation layer and electrically connected to the thin film transistors, the pixel electrodes being in the pixel regions and overlapping the thin film transistors, an opposite electrode in the transmitting regions and the pixel regions, the opposite electrode facing the plurality of pixel electrodes and being configured to transmit light, an organic emission layer interposed between the pixel electrodes and the opposite electrode, and a color filter in corresponding pixel regions.
Abstract:
An organic light emitting display apparatus includes a substrate, an encapsulation member facing the substrate, a plurality of pixels between the substrate and the encapsulation member, each pixel including a light emission area and a non-emission area, a first electrode overlapping at least the light emission area, an intermediate layer on the first electrode and including an organic emission layer, a second electrode on the intermediate layer, and a reflective member on a bottom surface of the encapsulation member, the bottom surface of the encapsulation member facing the substrate, and the reflective member including an opening corresponding to the light emission area, and a reflective surface around the opening and corresponding to the non-emission area.
Abstract:
A donor substrate for transfer and a manufacturing method of an organic light emitting diode (OLED) display, the donor substrate including a transparent support layer; a light-to-heat conversion layer on one side of the support layer, the light to heat conversion layer being in the form of a first pattern; a transfer layer covering the light-to-heat conversion layer; and a reflection layer on another side of the support layer, the other side being opposite to the one side of the support layer, the reflection layer being in the form of a second pattern.
Abstract:
An organic light emitting display apparatus includes a plurality of pixels, each of the pixels including first mirror pattern having an opening, and first to third sub pixels. The first sub pixels includes a first light emitting structure and is positioned to emit first color light through the opening, the second sub pixel includes a second light emitting structure positioned to emit second color light through the opening, and the third sub pixel includes a third light emitting structure positioned to emit third color light through the opening.
Abstract:
An organic light-emitting device with a plurality of subpixels, each subpixel including an emission region and a non-emission region, the organic light-emitting device including a substrate; an anode on the substrate, the anode including patterns that separately correspond to respective ones of the plurality of subpixels; an organic layer on the anode, the organic layer being common to the plurality of subpixels; and a cathode on the organic layer, the cathode including a plurality of subcathodes that each correspond to at least one of the subpixels and that allow light to pass through in emission regions, wherein adjacent two of the subcathodes overlap with each other in non-emission regions.
Abstract:
A display device and a method of manufacturing the same. The display device includes: a substrate; and a reflection member that is disposed on a surface of the substrate and has a first thickness in a first reflection region corresponding to a light-emitting region and a second thickness in a second reflection region corresponding to a non-light-emitting region.
Abstract:
A donor substrate includes a base substrate; a light reflection layer on the base substrate and partially overlapping the base substrate; a light-to-heat conversion layer on the base substrate, and including a combination layer including an insulating material and a first metal material; and a transfer layer on the light-to-heat conversion layer. A ratio of the first metal material in the combination layer to the insulating material in the combination layer increases as a distance from the base substrate increases along a thickness direction of the light-to-heat conversion layer.