Abstract:
A method to analyze a facial image includes: inputting a facial image to a residual network including residual blocks that are sequentially combined and arranged in a direction from an input to an output; processing the facial image using the residual network; and acquiring an analysis map from an output of an N-th residual block among the residual blocks using a residual deconvolution network, wherein the residual network transfers the output of the N-th residual block to the residual deconvolution network, and N is a natural number that is less than a number of all of the residual blocks, and wherein the residual deconvolution network includes residual deconvolution blocks that are sequentially combined, and the residual deconvolution blocks correspond to respective residual blocks from a first residual block among the residual blocks to the N-th residual block.
Abstract:
A lightened neural network method and apparatus. The neural network apparatus includes a processor configured to generate a neural network with a plurality of layers including plural nodes by applying lightened weighted connections between neighboring nodes in neighboring layers of the neural network to interpret input data applied to the neural network, wherein lightened weighted connections of at least one of the plurality of layers includes weighted connections that have values equal to zero for respective non-zero values whose absolute values are less than an absolute value of a non-zero value. The lightened weighted connections also include weighted connections that have values whose absolute values are no greater than an absolute value of another non-zero value, the lightened weighted connections being lightened weighted connections of trained final weighted connections of a trained neural network whose absolute maximum values are greater than the absolute value of the other non-zero value.
Abstract:
A lightened neural network method and apparatus. The neural network apparatus includes a processor configured to generate a neural network with a plurality of layers including plural nodes by applying lightened weighted connections between neighboring nodes in neighboring layers of the neural network to interpret input data applied to the neural network, wherein lightened weighted connections of at least one of the plurality of layers includes weighted connections that have values equal to zero for respective non-zero values whose absolute values are less than an absolute value of a non-zero value. The lightened weighted connections also include weighted connections that have values whose absolute values are no greater than an absolute value of another non-zero value, the lightened weighted connections being lightened weighted connections of trained final weighted connections of a trained neural network whose absolute maximum values are greater than the absolute value of the other non-zero value.
Abstract:
A processor implemented method of processing a facial expression image, the method includes controlling a camera to capture a first facial expression image and a second facial expression image, acquiring a first expression feature of the first facial expression image, acquiring a second expression feature of the second facial expression image, generating a new expression feature dependent on differences between the acquired first expression feature and the acquired second expression feature, and adjusting a target facial expression image based on the new expression feature.
Abstract:
A method of detecting a target includes generating an image pyramid based on an image on which a detection is to be performed; classifying candidate areas in the image pyramid using a cascade neural network; and determining a target area corresponding to a target included in the image based on the plurality of candidate areas, wherein the cascade neural network includes a plurality of neural networks, and at least one neural network among the neural networks includes parallel sub-neural networks.
Abstract:
The facial verification apparatus is a mobile computing apparatus, including a camera to capture an image, a display, and one or more processors. While in a lock state, the image is captured and facial verification performed using a face image, or using a detected face and in response to the face being detected. The facial verification includes a matching with respect to the detected face, or obtained face image, and a registered face information. If the verification is successful, the lock state of the apparatus may be canceled and the user allowed access to the apparatus. The lock state may be cancelled when the verification is successful and the user has been determined to have been attempting to gain access to the apparatus. Face image feedback to the user may not be displayed during the detecting for, or obtaining of, the face and/or performing of the facial verification.
Abstract:
Provided is a user authentication method and apparatus that obtains first environmental information indicating an environmental condition in which an input image of a user is captured, extracts a first feature vector from the input image, selects a second feature vector including second environmental information that matches the first environmental information from enrolled feature vectors in an enrollment database (DB), and authenticates the user based on the first feature vector and the second feature vector.
Abstract:
A method of detecting a target includes generating an image pyramid based on an image on which a detection is to be performed; classifying candidate areas in the image pyramid using a cascade neural network; and determining a target area corresponding to a target included in the image based on the plurality of candidate areas, wherein the cascade neural network includes a plurality of neural networks, and at least one neural network among the neural networks includes parallel sub-neural networks.
Abstract:
A method of detecting a target includes determining a quality type of a target image captured using a camera, determining a convolutional neural network of a quality type corresponding to the quality type of the target image in a database comprising convolutional neural networks, determining a detection value of the target image based on the convolutional neural network of the corresponding quality type, and determining whether a target in the target image is a true target based on the detection value of the target image.
Abstract:
A method and corresponding apparatus include extracting a movement trajectory feature of an object from an input video. The method and corresponding apparatus also include coding the extracted movement trajectory feature, and determining a type of a movement of the object based on the coded movement trajectory feature.