Large-scale asymmetric comparison computation for binary embeddings
    21.
    发明授权
    Large-scale asymmetric comparison computation for binary embeddings 有权
    二进制嵌入的大规模非对称比较计算

    公开(公告)号:US08370338B2

    公开(公告)日:2013-02-05

    申请号:US12960018

    申请日:2010-12-03

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30247

    摘要: A system and method for comparing a query object and one or more of a set of database objects are provided. The method includes providing quantized representations of database objects. The database objects have each been transformed with a quantized embedding function which is the composition of a real-valued embedding function and a quantization function. The query object is transformed to a representation of the query object in a real-valued embedding space using the real-valued embedding function. Query-dependent estimated distance values are computed for the query object, based on the transformed query object and stored. A comparison (e.g., distance or similarity) measure between the query object and each of the quantized database object representations is computed based on the stored query-dependent estimated distance values. Data is output based on the comparison computation.

    摘要翻译: 提供了一种用于比较查询对象与一组数据库对象中的一个或多个的系统和方法。 该方法包括提供数据库对象的量化表示。 数据库对象每个都已经用量化嵌入函数进行了变换,该量化嵌入函数是实值嵌入函数和量化函数的组合。 使用实值嵌入函数将查询对象转换为实值嵌入空间中的查询对象的表示。 基于所转换的查询对象并存储查询对象,计算与查询相关的估计距离值。 基于存储的与查询相关的估计距离值来计算查询对象和每个量化数据库对象表示之间的比较(例如,距离或相似性)度量。 基于比较计算输出数据。

    Learning weights of fonts for typed samples in handwritten keyword spotting
    22.
    发明申请
    Learning weights of fonts for typed samples in handwritten keyword spotting 有权
    学习手写关键词点样中类型样本的字体权重

    公开(公告)号:US20120033874A1

    公开(公告)日:2012-02-09

    申请号:US12851092

    申请日:2010-08-05

    IPC分类号: G06K9/00 G06K9/62

    摘要: A wordspotting system and method are disclosed. The method includes receiving a keyword and, for each of a set of typographical fonts, synthesizing a word image based on the keyword. A keyword model is trained based on the synthesized word images and the respective weights for each of the set of typographical fonts. Using the trained keyword model, handwritten word images of a collection of handwritten word images which match the keyword are identified. The weights allow a large set of fonts to be considered, with the weights indicating the relative relevance of each font for modeling a set of handwritten word images.

    摘要翻译: 公开了一种wordspotting系统和方法。 该方法包括接收关键字,并且针对一组排版字体中的每一个,基于关键字合成单词图像。 基于合成的单词图像和每组排版字体的相应权重来训练关键词模型。 使用经过训练的关键词模型,识别与该关键词匹配的手写词图像集合的手写词图像。 权重允许考虑一大堆字体,权重指示每个字体的相对相关性,用于对一组手写字图像进行建模。

    Color transfer between images through color palette adaptation
    23.
    发明授权
    Color transfer between images through color palette adaptation 有权
    图像之间的颜色转移通过调色板适应

    公开(公告)号:US08031202B2

    公开(公告)日:2011-10-04

    申请号:US12045807

    申请日:2008-03-11

    申请人: Florent Perronnin

    发明人: Florent Perronnin

    摘要: An image adjustment includes adapting a universal palette to generate (i) an input image palette statistically representative of pixels of an input image and (ii) a reference image palette statistically representative of pixels of a reference image, and adjusting at least some pixels of the input image to generate adjusted pixels that are statistically represented by the reference image palette. In some embodiments, a user interface for controlling the image adjustment includes a display and at least one user input device, the user interface displaying a set of colors indicative of the regions of color space represented by a palette and receiving a selection of one or more regions of the color space, so that the image adjustment adjusts those pixels of the input image lying within the one or more selected regions of the color space.

    摘要翻译: 图像调整包括调整通用调色板以产生(i)统计上代表输入图像的像素的输入图像调色板和(ii)统计代表参考图像的像素的参考图像调色板,并且调整至少一些像素 输入图像以生成由参考图像调色板统计表示的调整像素。 在一些实施例中,用于控制图像调整的用户界面包括显示器和至少一个用户输入设备,用户界面显示指示由调色板表示的颜色空间区域的一组颜色,并且接收一个或多个 颜色空间的区域,使得图像调整调整位于该颜色空间的一个或多个所选区域内的输入图像的像素。

    Asymmetric score normalization for handwritten word spotting system
    24.
    发明授权
    Asymmetric score normalization for handwritten word spotting system 有权
    手写字识别系统的不对称分数归一化

    公开(公告)号:US08027540B2

    公开(公告)日:2011-09-27

    申请号:US12014193

    申请日:2008-01-15

    IPC分类号: G06K9/18

    CPC分类号: G06K9/00879 G06K9/6292

    摘要: A method begins by receiving an image of a handwritten item. The method performs a word segmentation process on the image to produce a sub-image and extracts a set of feature vectors from the sub-image. Then, the method performs an asymmetric approach that computes a first log-likelihood score of the feature vectors using a word model having a first structure (such as one comprising a Hidden Markov Model (HMM)) and also computes a second log-likelihood score of the feature vectors using a background model having a second structure (such as one comprising a Gaussian Mixture Model (GMM)). The method computes a final score for the sub-image by subtracting the second log-likelihood score from the first log-likelihood score. The final score is then compared against a predetermined standard to produce a word identification result and the word identification result is output.

    摘要翻译: 方法从接收手写物品的图像开始。 该方法对图像执行字分割处理以产生子图像,并从子图像提取一组特征向量。 然后,该方法执行非对称方法,其使用具有第一结构(诸如包括隐马尔可夫模型(HMM)的单词)的单词模型来计算特征向量的第一对数似然分数,并且还计算第二对数似然分数 的特征向量使用具有第二结构的背景模型(例如包括高斯混合模型(GMM)的背景模型))。 该方法通过从第一对数似然分数中减去第二对数似然分数来计算子图像的最终得分。 然后将最终得分与预定标准进行比较以产生字识别结果,并输出字识别结果。

    UNSTRUCTURED DOCUMENT CLASSIFICATION
    25.
    发明申请
    UNSTRUCTURED DOCUMENT CLASSIFICATION 审中-公开
    未经规定的文件分类

    公开(公告)号:US20110137898A1

    公开(公告)日:2011-06-09

    申请号:US12632135

    申请日:2009-12-07

    IPC分类号: G06F17/30

    CPC分类号: G06F16/35 G06F16/93

    摘要: A document classification method comprises: (i) classifying pages of an input document to generate page classifications; (ii) aggregating the page classifications to generate an input document representation, the aggregating not being based on ordering of the pages; and (iii) classifying the input document based on the input document representation. A page classifier for use in the page classifying operation (i) is trained based on pages of a set of labeled training documents having document classification labels. In some such embodiments, the pages of the set of labeled training documents are not labeled, and the page classifier training comprises: clustering pages of the set of labeled training documents to generate page clusters; and generating the page classifier based on the page clusters.

    摘要翻译: 文档分类方法包括:(i)分类输入文档的页面以生成页面分类; (ii)聚合页面分类以生成输入文档表示,聚合不是基于页面的排序; 和(iii)基于输入文档表示对输入文档进行分类。 用于页面分类操作(i)中的页面分类器基于具有文档分类标签的一组标记的训练文档的页面进行训练。 在一些这样的实施例中,标记的训练文档集合的页面没有被标记,并且页面分类器训练包括:聚集所标识的训练文档集合的页面以生成页面簇; 以及基于页面集群生成页面分类器。

    COMPACT SIGNATURE FOR UNORDERED VECTOR SETS WITH APPLICATION TO IMAGE RETRIEVAL
    26.
    发明申请
    COMPACT SIGNATURE FOR UNORDERED VECTOR SETS WITH APPLICATION TO IMAGE RETRIEVAL 有权
    用于图像检索应用的无符号矢量集的紧凑签名

    公开(公告)号:US20110026831A1

    公开(公告)日:2011-02-03

    申请号:US12512209

    申请日:2009-07-30

    IPC分类号: G06K9/48 G06F17/30 G06F7/10

    摘要: To compute a signature for an object comprising or represented by a set of vectors in a vector space of dimensionality D, statistics are computed that are indicative of distribution of the vectors of the set of vectors amongst a set of regions Ri, i=1, . . . , N of the vector space, at least some statistics associated with each region are binarized to generate sets of binary values ai, i=1, . . . , N indicative of statistics of the vectors of the set of vectors belonging to the respective regions Ri, i=1, . . . , N; and a vector set signature is defined for the set of vectors including the sets of binary values ai, i=1, . . . , N. The computing, binarizing, and defining operations may be repeated for two sets of vectors, and a quantitative comparison of the two sets of vectors determined based on the corresponding vector set signatures.

    摘要翻译: 为了计算包括或由维度D的向量空间中的一组向量表示的对象的签名,计算指示一组区域Ri,i = 1之间的向量集合的向量的分布的统计, 。 。 。 ,N的向量空间,至少与每个区域相关联的一些统计量被二值化以生成二进制值集合a i,i = 1。 。 。 ,N表示属于各个区域Ri,i = 1的矢量组的矢量的统计。 。 。 ,N; 并且为包括二进制值ai,i = 1的集合的向量集合定义向量集签名。 。 。 可以针对两组向量重复计算,二值化和定义操作,以及基于相应向量集签名确定的两组向量的定量比较。

    FAST AND EFFICIENT NONLINEAR CLASSIFIER GENERATED FROM A TRAINED LINEAR CLASSIFIER
    27.
    发明申请
    FAST AND EFFICIENT NONLINEAR CLASSIFIER GENERATED FROM A TRAINED LINEAR CLASSIFIER 有权
    从训练线性分类器生成的快速有效的非线性分类器

    公开(公告)号:US20100318477A1

    公开(公告)日:2010-12-16

    申请号:US12483391

    申请日:2009-06-12

    IPC分类号: G06F15/18

    CPC分类号: G06K9/6271 G06N99/005

    摘要: A classifier method comprises: projecting a set of training vectors in a vector space to a comparison space defined by a set of reference vectors using a comparison function to generate a corresponding set of projected training vectors in the comparison space; training a linear classifier on the set of projected training vectors to generate a trained linear classifier operative in the comparison space; and transforming the trained linear classifier operative in the comparison space into a trained nonlinear classifier that is operative in the vector space to classify an input vector.

    摘要翻译: 分类器方法包括:使用比较函数将矢量空间中的一组训练矢量投影到由一组参考矢量定义的比较空间,以在比较空间中生成相应的一组投影训练矢量; 在所述一组投影训练矢量上训练线性分类器以产生在比较空间中操作的经训练的线性分类器; 以及将在所述比较空间中操作的经训练的线性分类器变换成在所述向量空间中操作以对输入向量进行分类的经训练的非线性分类器。

    SYSTEM AND METHOD FOR RECOMMENDING EDUCATIONAL RESOURCES
    28.
    发明申请
    SYSTEM AND METHOD FOR RECOMMENDING EDUCATIONAL RESOURCES 有权
    推荐教育资源的制度与方法

    公开(公告)号:US20100159432A1

    公开(公告)日:2010-06-24

    申请号:US12339979

    申请日:2008-12-19

    IPC分类号: G09B19/00 G06F17/00

    CPC分类号: G06Q10/10

    摘要: An educational recommender system and a method are provided. The method includes receiving a request to recommend a course of action related to a plurality of current students; accessing a computer database storing student data that corresponds to the plurality of current students; clustering in a computer process the plurality of current students into at least two clusters based at least on granular assessment data associated with student data corresponding to respective current students; and outputting the results of the clustering to a user. The granular assessment data includes a result of an assessment administered to respective students of the plurality of current students, and each assessment includes a plurality of questions for assessing one of the current students. The associated result includes an independent evaluation of each respective question of the plurality of questions.

    摘要翻译: 提供教育推荐系统和方法。 该方法包括接收关于推荐与多个当前学生相关的行动过程的请求; 访问存储对应于多个当前学生的学生数据的计算机数据库; 至少基于与对应于当前学生的学生数据相关联的粒度评估数据,将计算机中的多个群集进行处理,将多个当前学生进入至少两个群集; 并将聚类的结果输出给用户。 粒度评估数据包括对多名当前学生的各个学生进行评估的结果,并且每个评估包括用于评估当前学生之一的多个问题。 相关联的结果包括对各个问题的每个相应问题的独立评估。

    SYSTEM AND METHOD FOR OBJECT CLASS LOCALIZATION AND SEMANTIC CLASS BASED IMAGE SEGMENTATION
    29.
    发明申请
    SYSTEM AND METHOD FOR OBJECT CLASS LOCALIZATION AND SEMANTIC CLASS BASED IMAGE SEGMENTATION 有权
    用于对象类定位和基于语义类的图像分割的系统和方法

    公开(公告)号:US20100040285A1

    公开(公告)日:2010-02-18

    申请号:US12191579

    申请日:2008-08-14

    IPC分类号: G06K9/64

    摘要: An automated image processing system and method are provided for class-based segmentation of a digital image. The method includes extracting a plurality of patches of an input image. For each patch, at least one feature is extracted. The feature may be a high level feature which is derived from the application of a generative model to a representation of low level feature(s) of the patch. For each patch, and for at least one object class from a set of object classes, a relevance score for the patch, based on the at least one feature, is computed. For at least some or all of the pixels of the image, a relevance score for the at least one object class based on the patch scores is computed. An object class is assigned to each of the pixels based on the computed relevance score for the at least one object class, allowing the image to be segmented and the segments labeled, based on object class.

    摘要翻译: 提供了一种用于数字图像的基于分类的分割的自动图像处理系统和方法。 该方法包括提取输入图像的多个片段。 对于每个补丁,至少提取一个要素。 该特征可以是从生成模型的应用导出到补丁的低级特征的表示的高级特征。 对于每个补丁以及来自一组对象类的至少一个对象类,基于至少一个特征来计算补丁的相关性得分。 对于图像的至少一些或全部像素,计算基于补丁得分的至少一个对象类别的相关度得分。 基于所计算的至少一个对象类的相关性分数,将对象类分配给每个像素,允许根据对象类来分割图像和标记的图像。

    Generic visual classification with gradient components-based dimensionality enhancement
    30.
    发明申请
    Generic visual classification with gradient components-based dimensionality enhancement 有权
    基于渐变分量的通用视觉分类

    公开(公告)号:US20070258648A1

    公开(公告)日:2007-11-08

    申请号:US11418949

    申请日:2006-05-05

    申请人: Florent Perronnin

    发明人: Florent Perronnin

    IPC分类号: G06K9/62

    摘要: In an image classification system (70), a plurality of generative models (30) correspond to a plurality of image classes. Each generative model embodies a merger of a general visual vocabulary and an image class-specific visual vocabulary. A gradient-based class similarity modeler (40) includes (i) a model fitting data extractor (46) that generates model fitting data of an image (72) respective to each generative model and (ii) a dimensionality enhancer (50) that computes a gradient-based vector representation of the model fitting data with respect to each generative model in a vector space defined by the generative model. An image classifier (76) classifies the image respective to the plurality of image classes based on the gradient-based vector representations of class similarity.

    摘要翻译: 在图像分类系统(70)中,多个生成模型(30)对应于多个图像类别。 每个生成模式体现了一般视觉词汇和图像类特定视觉词汇的合并。 基于梯度的类相似性建模器(40)包括(i)模型拟合数据提取器(46),其生成与每个生成模型相对应的图像(72)的模型拟合数据,以及(ii)维度增强器(50),其计算 相对于由生成模型定义的向量空间中的每个生成模型的模型拟合数据的基于梯度的向量表示。 图像分类器(76)基于类相似性的基于梯度的矢量表示将图像分类为多个图像类别。