Abstract:
A method including positioning a downhole acquisition tool in a wellbore in a geological formation; performing a pretest sequence to gather at least one of pressure or mobility information based on downhole acquisition from a sample line, a guard line, or both while the downhole acquisition tool is within the wellbore. The pretest sequence includes controlling a valve assembly to a first valve configuration that may allow the fluid to flow into the downhole tool via one or more flowlines toward a pretest system. The one or more flowlines include the sample line only, the guard line only, or both the sample line and the guard line; and drawing in the fluid through the one or more flowlines. The method also includes controlling the valve assembly to a second valve configuration. The second valve configuration is different from the first valve configuration and may block the one or more flowlines from drawing in the fluid.
Abstract:
A tool to be used within a wellbore including a wall, the wellbore extending through a formation including formation fluid, includes a first packer and a second packer. The first packer includes a packer port to enable formation fluid flow through the first packer, with the second packer spaced from the first packer. The first packer and the second packer are expandable to abut the wellbore wall to form an interval within the wellbore between the first packer and the second packer, in which the tool further includes an interval port in fluid communication with the interval.
Abstract:
A downhole modular tool includes a first module, a second module, a third module, and one or more connectors for connecting the first, second, and third modules. Each module includes a drill collar, a drilling fluid passageway, a first fluid passageway, and a second fluid passageway. The one or more connectors connect any one of the first, second, and third modules, to another of the first, second, and third modules to transfer the drilling fluid, the first fluid, and the second fluid between the connected modules.
Abstract:
A wellbore instrument system includes a pipe string extending from earth's surface to a selected depth in a wellbore. The pipe string includes at least one of an electrical conductor and an optical fiber signal channel. A power sub including an electric power source is coupled proximate a lower end of the pipe string. At least one electrically powered wireline configurable wellbore instrument is coupled to the power source in the sub.
Abstract:
Processes for injection of fluids into a wellbore via drill pipe. In some embodiments, the process can include positioning a downhole apparatus on a drill pipe. The process can also include placing the downhole apparatus at a desired station depth within a wellbore. The process can also include attaching a cable to the downhole apparatus from an up-hole environment. The process can also include setting at least one packer to seal a space between at least a portion of the downhole apparatus and an inner surface of the wellbore. The process can also include introducing a fluid to the downhole apparatus through the drill pipe and using a pump to inject at least a portion of the fluid into a geological stratum.
Abstract:
Systems and methods presented herein include an assembly of tools that can be arranged in a wellbore in such a way that allows a combination of formation testing (e.g., with a modular formation dynamics testing tool, a wireline formation testing tool, and so forth) and drill stem testing (DST). The assembly of tools enables performance of both types of activities potentially in a single run in the hole, and facilitate full control of the reservoir and formation fluids or, in case of injection, of injected fluids inside the tubing or drill pipe. In addition, the assembly of tools allows for multiple set points to perform zonal evaluations with the formation testing tools, and facilitate performance of full scale flow tests with the DST string.
Abstract:
Processes for injection of fluids into a wellbore via drill pipe. In some embodiments, the process can include positioning a downhole apparatus on a drill pipe. The process can also include placing the downhole apparatus at a desired station depth within a wellbore. The process can also include attaching a cable to the downhole apparatus from an up-hole environment. The process can also include setting at least one packer to seal a space between at least a portion of the downhole apparatus and an inner surface of the wellbore. The process can also include introducing a fluid to the downhole apparatus through the drill pipe and using a pump to inject at least a portion of the fluid into a geological stratum.
Abstract:
Processes for injection of fluids into a wellbore via drill pipe. In some embodiments, the process can include positioning a downhole apparatus on a drill pipe. The process can also include placing the downhole apparatus at a desired station depth within a wellbore. The process can also include attaching a cable to the downhole apparatus from an up-hole environment. The process can also include setting at least one packer to seal a space between at least a portion of the downhole apparatus and an inner surface of the wellbore. The process can also include introducing a fluid to the downhole apparatus through the drill pipe and using a pump to inject at least a portion of the fluid into a geological stratum.
Abstract:
This disclosure relates to a separating a fluid having multiple phases during formation testing. For example, certain embodiments of the present disclosure relate to receiving contaminated formation fluid on a first flow line and separating a contamination (e.g., mud filtrate) from the formation fluid by diverting the relatively heavier and/or denser fluid (e.g., the mud filtrate) downward through a second flow line and diverting the relatively lighter and/or less dense fluid upward through a third flow line. In some embodiments, the third flow line is generally oriented upwards at a height that may facilitate the separation of the heavier fluid from the relatively lighter fluid based on gravity and/or pumps.
Abstract:
This disclosure relates to a separating a fluid having multiple phases during formation testing. For example, certain embodiments of the present disclosure relate to receiving contaminated formation fluid on a first flow line and separating a contamination (e.g., mud filtrate) from the formation fluid by diverting the relatively heavier and/or denser fluid (e.g., the mud filtrate) downward through a second flow line and diverting the relatively lighter and/or less dense fluid upward through a third flow line. In some embodiments, the third flow line is generally oriented upwards at a height that may facilitate the separation of the heavier fluid from the relatively lighter fluid based on gravity and/or pumps.