Autonomous seismic nodes for the seabed

    公开(公告)号:US09778386B2

    公开(公告)日:2017-10-03

    申请号:US15280626

    申请日:2016-09-29

    CPC classification number: G01V1/18 G01V1/38 G01V1/3852 G01V2210/1427

    Abstract: Embodiments of an autonomous seismic node that can be positioned on the seabed are disclosed. The autonomous seismic node comprises a pressurized node housing substantially surrounded and/or enclosed by a non-pressurized node housing. The seismic node may be substantially rectangular or square shaped for node storage, handling, and deployment. One or more node locks may be coupled to either (or both) of the pressurized node housing or the non-pressurized node housing. The pressurized node housing may be formed as a cast monolithic titanium structure and may be a complex shape with irregularly shaped sides and be asymmetrical. In other embodiments, a non-pressurized housing may substantially enclose other devices or payloads besides a node, such as weights or transponders, and be coupled to a plurality of protrusions.

    OVERBOARD SYSTEM FOR DEPLOYMENT AND RETRIEVAL OF AUTONOMOUS SEISMIC NODES
    23.
    发明申请
    OVERBOARD SYSTEM FOR DEPLOYMENT AND RETRIEVAL OF AUTONOMOUS SEISMIC NODES 审中-公开
    自动地震记录的部署和检索系统

    公开(公告)号:US20170031046A1

    公开(公告)日:2017-02-02

    申请号:US15290533

    申请日:2016-10-11

    CPC classification number: G01V1/3852 B63B35/04 G01V1/3843

    Abstract: Embodiments of systems and methods for deploying and retrieving a plurality of autonomous seismic nodes from the back deck of a marine vessel using an overboard node deployment and retrieval system are presented. The overboard system may comprise one or more overboard wheels that are actively powered to move in response to changes in movement of the deployed cable. The overboard system may comprise a first overboard wheel with a plurality of rollers and a second overboard wheel configured to detect movement and/or changes in a position of the deployment line. The overboard system may be configured to move the first overboard wheel in response to movement of the second overboard wheel. In addition, the first overboard wheel may comprise at least one opening or pocket configured to hold a node while the node passes across the wheel. Other seismic devices may also pass through the overboard system, such as transponders and weights attached to the deployment cable.

    Abstract translation: 提出了使用超板节点部署和检索系统从海洋船舶后甲板部署和检索多个自主地震节点的系统和方法的实施例。 舷外系统可以包括一个或多个舷外轮,其被主动地动力以响应于展开的电缆的移动的变化而移动。 舷外系统可以包括具有多个辊的第一舷外轮和配置成检测部署线的位置的移动和/或变化的第二舷外轮。 舷外系统可以被配置为响应于第二舷外轮的移动而移动第一舷外车轮。 此外,第一舷外轮可以包括构造成在节点穿过车轮时保持节点的至少一个开口或口袋。 其他地震装置也可以通过舷外系统,例如连接到展开电缆的应答器和重物。

    Autonomous seismic nodes for the seabed
    24.
    发明授权
    Autonomous seismic nodes for the seabed 有权
    海底自治地震台站

    公开(公告)号:US09523780B2

    公开(公告)日:2016-12-20

    申请号:US14821471

    申请日:2015-08-07

    CPC classification number: G01V1/18 G01V1/38 G01V1/3852 G01V2210/1427

    Abstract: Embodiments of an autonomous seismic node that can be positioned on the seabed are disclosed. The autonomous seismic node comprises a pressurized node housing substantially surrounded and/or enclosed by a non-pressurized node housing. The seismic node may be substantially rectangular or square shaped for node storage, handling, and deployment. One or more node locks may be coupled to either (or both) of the pressurized node housing or the non-pressurized node housing. The pressurized node housing may be formed as a cast monolithic titanium structure and may be a complex shape with irregularly shaped sides and be asymmetrical. In other embodiments, a non-pressurized housing may substantially enclose other devices or payloads besides a node, such as weights or transponders, and be coupled to a plurality of protrusions.

    Abstract translation: 公开了可以定位在海床上的自主地震节点的实施例。 自主地震节点包括基本上由非加压节点壳体包围和/或包围的加压节点壳体。 地震节点可以是用于节点存储,处理和部署的基本矩形或正方形。 一个或多个节点锁可以联接到加压节点壳体或非加压节点壳体中的任一个(或两者)。 加压节点壳体可以形成为铸造单片钛结构,并且可以是具有不规则形状的侧面的复杂形状并且是不对称的。 在其他实施例中,非加压壳体可以基本上包围节点之外的其它装置或有效载荷,例如重物或应答器,并且联接到多个突起。

    OVERBOARD SYSTEM FOR DEPLOYMENT AND RETRIEVAL OF AUTONOMOUS SEISMIC NODES

    公开(公告)号:US20160341840A1

    公开(公告)日:2016-11-24

    申请号:US15227411

    申请日:2016-08-03

    CPC classification number: G01V1/3852 B63B35/04 G01V1/3843

    Abstract: Embodiments of systems and methods for deploying and retrieving a plurality of autonomous seismic nodes from the back deck of a marine vessel using an overboard node deployment and retrieval system are presented. The overboard system may comprise one or more overboard wheels that are actively powered to move in response to changes in movement of the deployed cable. The overboard system may comprise a first overboard wheel with a plurality of rollers and a second overboard wheel configured to detect movement and/or changes in a position of the deployment line. The overboard system may be configured to move the first overboard wheel in response to movement of the second overboard wheel. In addition, the first overboard wheel may comprise at least one opening or pocket configured to hold a node while the node passes across the wheel. Other seismic devices may also pass through the overboard system, such as transponders and weights attached to the deployment cable.

    Overboard system for deployment and retrieval of autonomous seismic nodes
    26.
    发明授权
    Overboard system for deployment and retrieval of autonomous seismic nodes 有权
    用于部署和检索自主地震节点的舷外系统

    公开(公告)号:US09429671B2

    公开(公告)日:2016-08-30

    申请号:US14820285

    申请日:2015-08-06

    CPC classification number: G01V1/3852 B63B35/04 G01V1/3843

    Abstract: Embodiments of systems and methods for deploying and retrieving a plurality of autonomous seismic nodes from the back deck of a marine vessel using an overboard node deployment and retrieval system are presented. The overboard system may comprise one or more overboard wheels that are actively powered to move in response to changes in movement of the deployed cable. The overboard system may comprise a first overboard wheel with a plurality of rollers and a second overboard wheel configured to detect movement and/or changes in a position of the deployment line. The overboard system may be configured to move the first overboard wheel in response to movement of the second overboard wheel. In addition, the first overboard wheel may comprise at least one opening or pocket configured to hold a node while the node passes across the wheel. Other seismic devices may also pass through the overboard system, such as transponders and weights attached to the deployment cable.

    Abstract translation: 提出了使用超板节点部署和检索系统从海洋船舶后甲板部署和检索多个自主地震节点的系统和方法的实施例。 舷外系统可以包括一个或多个舷外轮,其被主动地动力以响应于展开的电缆的移动的变化而移动。 舷外系统可以包括具有多个辊的第一舷外轮和配置成检测部署线的位置的移动和/或变化的第二舷外轮。 舷外系统可以被配置为响应于第二舷外轮的移动而移动第一舷外车轮。 此外,第一舷外轮可以包括构造成在节点穿过车轮时保持节点的至少一个开口或口袋。 其他地震装置也可以通过舷外系统,例如连接到展开电缆的应答器和重物。

    AUTONOMOUS SEISMIC NODES FOR THE SEABED
    27.
    发明申请
    AUTONOMOUS SEISMIC NODES FOR THE SEABED 有权
    自由的地震纪念碑

    公开(公告)号:US20160041280A1

    公开(公告)日:2016-02-11

    申请号:US14821471

    申请日:2015-08-07

    CPC classification number: G01V1/18 G01V1/38 G01V1/3852 G01V2210/1427

    Abstract: Embodiments of an autonomous seismic node that can be positioned on the seabed are disclosed. The autonomous seismic node comprises a pressurized node housing substantially surrounded and/or enclosed by a non-pressurized node housing. The seismic node may be substantially rectangular or square shaped for node storage, handling, and deployment. One or more node locks may be coupled to either (or both) of the pressurized node housing or the non-pressurized node housing. The pressurized node housing may be formed as a cast monolithic titanium structure and may be a complex shape with irregularly shaped sides and be asymmetrical. In other embodiments, a non-pressurized housing may substantially enclose other devices or payloads besides a node, such as weights or transponders, and be coupled to a plurality of protrusions.

    Abstract translation: 公开了可以定位在海床上的自主地震节点的实施例。 自主地震节点包括基本上由非加压节点壳体包围和/或包围的加压节点壳体。 地震节点可以是用于节点存储,处理和部署的基本矩形或正方形。 一个或多个节点锁可以联接到加压节点壳体或非加压节点壳体中的任一个(或两者)。 加压节点壳体可以形成为铸造单片钛结构,并且可以是具有不规则形状的侧面的复杂形状并且是不对称的。 在其他实施例中,非加压壳体可以基本上包围节点之外的其它装置或有效载荷,例如重物或应答器,并且联接到多个突起。

Patent Agency Ranking