Abstract:
A device may provide, to a user device, a first message instructing a technician to move fiber cables and may receive a first signal based on the technician moving the fiber cables and a rest signal based on the technician stopping movement of the fiber cables. The device may calculate a distance, an average peak signal, and a baseline signal based on the first signal and the rest signal and may calculate a data collection window based on the distance, the average peak signal, and the baseline signal. The device may provide, to the user device, a second message instructing the technician to move one fiber cable at a time and may receive second signals based on the technician moving one fiber cable at a time. The device may provide, for display to the user device, the data collection window and indications of the second signals.
Abstract:
A distributed acoustic system (DAS) method and system. The system may comprise an interrogator and an umbilical line comprising a first fiber optic cable and a second fiber optic cable attached at one end to the interrogator. The DAS may further include a downhole fiber attached to the umbilical line at the end opposite the interrogator and a light source disposed in the interrogator that is configured to emit a plurality of coherent light frequencies into the umbilical line and the downhole fiber. The method may include generating interferometric signals of the plurality of frequencies of backscattered light that have been received by the photo detector assembly and processing the interferometric signals with an information handling system.
Abstract:
An apparatus includes an array of seismic sensor units that are adapted to acquire measurements in connection with a land surface-based seismic survey. Each seismic sensor unit includes a particle motion sensor and a rotation sensor.
Abstract:
A high sensitivity structural health monitoring network includes a plurality of sensor nodes disposed apart from each other and communicating through one or more sensor channels. The nodes include smart sensor circuit boards with an interface to a wireless smart sensor board platform, a multi-axis accelerometer having a measurement range and resolution set to provide sensitivity to measure ambient structural vibrations an analog to digital converter for converting signals that includes a plurality of individual channels being individually programmable for signal conditioning for providing data to the interface. A network framework provides network services including a time synchronization service with network-wide global timestamps for sensor data and a unified sensing service that supports collection of data for all sensor channels from all nodes together with a single set of associated time stamps.
Abstract:
Clamp and Bending Strain Relief (BSR) system and method are disclosed. One example of a system can include a clamp coupled to a cable. The clamp is configured to couple an apparatus to the cable while allowing the cable to pass continuously through the clamp. A BSR apparatus is coupled to the clamp and the cable by a housing.
Abstract:
Disclosed are a system, apparatus, and method for optical fiber well deployment in seismic optical surveying. Embodiments of this disclosure may include methods of deploying a spooled optical fiber distributed sensor into the wellbore integrated in a ballast or weight for a seismic optic tool, to achieve deployment of a lightweight disposable fiber optic cable against the wellbore walls via gravity. The method may further include unspooling the spooled optical fiber distributed sensor and using the optical fiber as a distributed seismic receiver. Once the fiber optic distributed sensor is deployed according to methods of the present disclosure, surveys may be obtained and processed by various methods.
Abstract:
In one aspect, an apparatus is disclosed comprising: a housing; a proof mass movable within the housing; an optical element mounted on one of the housing and the proof mass; a reflective element on the other one of the housing and the proof mass; a light source configured to illuminate grating and minor; and one or more detectors configured to detect light incident from the reflective element and the diffractive element and generate a signal indicative of the relative displacement of proof mass and the housing.
Abstract:
The present disclosure is directed to a MEMS-based rotation sensor for use in seismic data acquisition and sensor units having same. The MEMS-based rotation sensor includes a substrate, an anchor disposed on the substrate and a proof mass coupled to the anchor via a plurality of flexural springs. The proof mass has a first electrode coupled to and extending therefrom. A second electrode is fixed to the substrate, and one of the first and second electrodes is configured to receive an actuation signal, and another of the first and second electrodes is configured to generate an electrical signal having an amplitude corresponding with a degree of angular movement of the first electrode relative to the second electrode. The MEMS-based rotation sensor further includes closed loop circuitry configured to receive the electrical signal and provide the actuation signal. Related methods for using the MEMS-based rotation sensor in seismic data acquisition are also described.
Abstract:
The invention relates to microfabrication technology for producing sensing cells, for use, for example, in molecular electronic transducer (MET) based seismometers devices. In some aspects, a method for fabricating a sensing element is provided. The method includes providing a first wafer including a first substrate, a second substrate, and a first insulating layer between therebetween, etching a first fluid throughhole through the first substrate, the first insulating layer, and the second substrate, and coating the first substrate and second substrate with a first and second conductive coating, respectively. The method also includes providing a second wafer including a third substrate, a fourth substrate, and a second insulating layer therebetween, etching a second fluid throughhole through the third substrate, the second insulating layer, and the fourth substrate, and coating the third substrate with a third conductive coating from top and the fourth substrate with a fourth conductive coating from back.
Abstract:
Methods and devices are disclosed for measuring low levels of acceleration caused by low frequency seismic waves. For example, an omnidirectional beam accelerometer configured to measure low frequency waves is disclosed. The omnidirectional beam accelerometer may include three beam acceleration sensors. Each beam acceleration sensor may include a respective mass and a respective beam. Each respective beam may be comprised at least in part of a piezoelectric material. Each beam acceleration sensor may have a ratio of mass density [kg/m3] to beam stiffness [N/m] of at least 4.5×10−5 kg/Nm2. The omnidirectional beam accelerometer may also include a housing to ensure the sensors are operating in orthogonal directions and an interface circuit to interface between the sensor and external circuitry.