Abstract:
An apparatus is arranged to detect contact between an air bearing surface of a transducer and a medium using a modulated thermal sensor signal. A laser source produces modulated laser light. A thermal sensor is disposed at or near the air bearing surface and is subject to cyclic heating by the modulated laser light. The thermal sensor is configured to produce the modulated sensor signal in response to the cyclic heating.
Abstract:
The present disclosure includes systems and methods for using a comparator-based, relaxation oscillator circuit to detect capacitance of a capacitor formed between a metallic feature in a read/write head and a metallic feature in a storage medium.
Abstract:
A method and apparatus are directed to providing relative movement between a slider configured for heat-assisted magnetic recording and a magnetic recording medium, and causing protrusion of a portion of an air bearing surface (ABS) of the slider in response to activating at least a laser source while maintaining spacing between the protrusion and the medium. A magnitude of at least a portion of the protrusion is measured while maintaining spacing between the protrusion and the medium.
Abstract:
An apparatus comprises a thermal sensor configured to interact with a magnetic recording disk. A head-disk interface is defined between the thermal sensor and the disk. A power supply is coupled to the thermal sensor and configured to supply a bias power to the thermal sensor between a low power and a high power. A processor is coupled to the thermal sensor and configured to determine a slope of a resistance response of the thermal sensor. The processor is further configured to detect a change in the slope relative to a baseline slope. The slope change indicates increased heat sinking between the thermal sensor and the disk due to the presence of contaminant buildup at the head-disk interface.
Abstract:
A light source is configured to produce light, a waveguide is optically coupled to the light source and configured to direct the light to an intended focus location, and a slider is configured to use the light as an energy source for heating a region of a magnetic recording medium. A thermal sensor is situated on the slider at a location outside of a light path that includes the intended focus location. The thermal sensor is configured for sensing a short time constant change in temperature resulting from light source heating of the thermal sensor, wherein the sensed change in thermal sensor temperature is representative of optical intensity of the light delivered to the intended focus location.
Abstract:
A writer core of a transducer is configured to interact with a magnetic recording medium and comprises an upper core and a lower core. At least one of the upper and lower cores comprises a return pole having a return shield. The apparatus also comprises a writer pole between the upper and lower cores, and a writer gap defined between the writer pole and the return shield. The apparatus further comprises a sensor element within one of the upper and lower cores that includes the writer gap. The sensor element has a temperature coefficient of resistance and is configured to sense for a change in temperature indicative of one or both of a change in spacing and contact between the transducer and the magnetic recording medium.
Abstract:
A writer core of a transducer is configured to interact with a magnetic recording medium and comprises an upper core and a lower core. At least one of the upper and lower cores comprises a return pole having a return shield. The apparatus also comprises a writer pole between the upper and lower cores, and a writer gap defined between the writer pole and the return shield. The apparatus further comprises a sensor element within one of the upper and lower cores that includes the writer gap. The sensor element has a temperature coefficient of resistance and is configured to sense for a change in temperature indicative of one or both of a change in spacing and contact between the transducer and the magnetic recording medium.
Abstract:
A head transducer, configured to interact with a magnetic recording medium, includes a first sensor having a temperature coefficient of resistance (TCR) and configured to produce a first sensor signal, and a second sensor having a TCR and configured to produce a second sensor signal. One of the first and second sensors is situated at or near a close point of the head transducer in relation to the magnetic recording medium, and the other of the first and second sensors spaced away from the close point. Circuitry is configured to combine the first and second sensor signals and produce a combined sensor signal indicative of one or both of a change in head-medium spacing and head-medium contact. Each of the sensors may have a TCR with the same sign (positive or negative) or each sensor may have a TCR with a different sign.
Abstract:
A head transducer, configured to interact with a magnetic recording medium, includes a first sensor having a temperature coefficient of resistance (TCR) and configured to produce a first sensor signal, and a second sensor having a TCR and configured to produce a second sensor signal. One of the first and second sensors is situated at or near a close point of the head transducer in relation to the magnetic recording medium, and the other of the first and second sensors spaced away from the close point. Circuitry is configured to combine the first and second sensor signals and produce a combined sensor signal indicative of one or both of a change in head-medium spacing and head-medium contact. Each of the sensors may have a TCR with the same sign (positive or negative) or each sensor may have a TCR with a different sign.
Abstract:
An apparatus of the present disclosure generally includes a recording head, circuitry, a thermal sensor, and a detector. The recording head has an electromagnetic attraction to a recording medium. The circuitry is configured to oscillate the electromagnetic attraction between the recording head and the recording medium. The oscillating electromagnetic attraction produces a corresponding oscillating clearance between the recording head and the recording medium. The thermal sensor, located in or near the recording head, senses an oscillating temperature that is induced by the oscillating clearance and produces a sensor signal that is representative of the sensed temperature. The detector is coupled to the thermal sensor and is configured to detect at least one of head-medium contact and clearance using the sensor signal and the electromagnetic attraction.