摘要:
A communication transceiver transmits a power-controlled first signal responsive to received power control commands and transmits one or more additional signals at variable power gains relative to the transmit power of the first signal based on reception quality feedback received for the additional signals. Thus, a mobile station may transmit a traffic channel at a variable power gain relative to its pilot signal power and vary that gain responsive to reception quality feedback received by it for the traffic signal. Of course, the mobile station may float more than one traffic channel using variable gains and may use different variable gains for each one. Further, the mobile station may float one or more non-pilot channels relative to the pilot or relative to another channel, while transmitting one or more fixed gain channels. Similar variable power gain may be employed at network base stations for forward link signals.
摘要:
A method of generating a set of generator polynomials for use as a tail biting convolution code to operate on data transmitted over a channel comprises: (1) selecting valid combinations of generator polynomials to include in a pool of potential codes, each valid combination being a potential code; (2) determining first lines of a weight spectrum for each potential code in the pool and including potential codes of the pool having best first lines in a candidate set; (3) determining best codes of the candidate set based on the first L number of lines in the weight spectrum; (4) selecting an optimum code(s) from the best codes; and (5) configuring a shift register circuit(s) of a data transceiver to implement the optimum code(s).
摘要:
A wireless communication network receives packet data transmissions from a mobile station, tracks the occurrence of retransmission requests sent to the mobile station responsive thereto, and modifies the radio link assignments for the mobile station based at least in part on said tracking. For example, a base station controller may be configured to manage the active set of a mobile station based on the number and/or frequency of NACK messages sent by the radio base stations in the mobile station's active set(s) responsive to packet data transmissions from the mobile station. The ACK/NACK response of a radio base station to mobile station transmissions may be used to detect link imbalance, identify poor reverse link channels, etc. The base station controller can add or change radio links based on the ACK/NACK response to improve reverse link performance, trigger voice call handoff, correct link imbalance, etc.
摘要:
A method of reverse link power control for a reverse packet data channel in a wireless communication system allows a mobile station to autonomously change its data transmission rate. The mobile station transmits packet data over a reverse packet data channel having a data rate variant transmit power level that varies based on a transmit data rate on the packet data channel. The mobile station further transmits control signals over a reverse control channel associated with the reverse packet data channel. The transmit power level of the reverse control channel is such that the transmit power level does not vary with the transmit data rate on the packet data channel. The radio base station measures the strength of the received signals on the reverse control channel, compares the measured strength to a power control set point, and generates a power control signal responsive to the comparison of the control signal to the power control set point.
摘要:
A base station generates per-cell ACK/NACK responses rather than per-sector ACK/NACK responses. For a given mobile station signal received in softer handoff at two of the base station's sectors, the base station generates an ACK response if at least one of the soft handoff sectors correctly receives the signal, and otherwise generates a NACK response. Alternatively, the base station can combine the softer handoff signals and generate ACK/NACK responses based on whether the combined signal is correctly received. Since only one set of ACK/NACK responses are generated for all of the softer handoff sectors, the base station can use the forward link in just one softer handoff sector to send the ACK/NACK responses to the mobile station, consuming fewer forward link transmit resources at the base station. Or, the base station can send the same ACK/NACK responses from two or more softer handoff sectors, thus allowing diversity combining of the ACK/NACK responses at the mobile station.