Abstract:
Certain aspects of the present disclosure provide a technique for bundling the received service data units (SDU) in a first communication layer to generate a protocol data unit (PDU) to pass to a second communication layer. For example, one or more packet data convergence protocol (PDCP) SDUs may be concatenated to generate a PDCP PDU and be sent to a radio link control (RLC) layer in the transmitter side. Similarly, one or more PDCP SDUs may be extracted from a PDCP PDU in the receiver side.
Abstract:
Certain aspects of the present disclosure provide a technique for pre-bundling the received service data units (SDU) into an SDU bundle in a first communication layer before receiving a scheduling information from a second communication layer and adjusting the SDU bundle when the scheduling information is received.
Abstract:
An apparatus and method are disclosed for determining the optimal bandwidth fractions for all the users in each frequency band in a wireless communication system to maximize the net sum of user utilities. User utilities are functions of average rates of users, where different averaging rules can be used for different users. The standard approach of computing an optimal scheduler strategy involves the solution of a convex optimization problem that has a complexity on the order of O(N3) for N flows. This approach is not feasible for online implementation having a large number of flows. The method of the present work employs an efficient computational algorithm that obtains the optimal bandwidth fractions in O(N) time. This feature makes the method suitable for implementation in wideband cellular systems like LTE (Long Term Evolution) and UMB (Ultra Mobile Broadband).
Abstract:
A FAWNA that allows high-speed mobile connectivity by leveraging the speed of optical networks. Specifically, SIMO FAWNA, which comprises a SIMO wireless channel interfaced with a fiber channel through wireless-to-optical interfaces. Received wireless signal at each interface are sampled and quantized prior to transmission. The capacity of the FAWNA approaches the capacity of the architecture exponentially with fiber capacity. It is also shown that for a given fiber capacity, there is an optimal method of operating wireless bandwidth and number of interfaces. An optimal method to divide the fiber capacity among the interfaces is shown, which ensures that each interface is allocated a rate so that noise is dominated by front end noise rather than by quantization distortion. A method is also presented in which, rather than dynamically changing rate allocation based on channel state, a less complex, fixed rate allocation may be adopted with very small loss in performance.
Abstract:
A mechanism is described for facilitating automatic music-queuing, karaoke managing, and track mixing. A method, as described herein, includes receiving, at a computing device, a guest elevation request from a guest client device in communication with the computing device including a server computing device serving as a host computer, where the guest elevation request includes prioritizing a request for an audio track or a video clip placed by a user via the guest client device. The method may further include performing analysis of the guest elevation request to determine whether to approve or disapprove the guest elevation request, and elevating the guest client device associated with the guest elevation request if the guest elevation request is approved. The method may further include communicating the approval of the guest elevation request and the elevation of the guest client device to the guest client device over a communication network.
Abstract:
A network device connected to a base station via a backhaul connection may be operable to determine whether the backhaul connection is congested. The determination may be based on a periodic data cap imposed on the backhaul connections. In response to a determination that the backhaul connection is congested, the network device may configure one or more cellular communication parameters of one or more of the plurality of base stations. The determination may be based on one or more of: a total amount of data consumed over the backhaul connection during a current time period, a traffic load on the backhaul connection, and an amount of time remaining in the current time period.
Abstract:
A network device may make a determination that a first backhaul connection, which serves a first base station, is congested and that a second backhaul connection, which serves a second base station, is not congested. This determination may be made based on a first periodic data cap imposed (on the first backhaul connection, a traffic load on the first backhaul connection, a second periodic data cap imposed on the second backhaul connection, and a traffic load on the second backhaul connection. In response to the determination, the network device may configure a value of a cellular communication parameter utilized by one or both of the base stations. The configuration may comprise periodic adjustments of the value of the cellular communication parameter. The periodic adjustments may cause one or more mobile devices to be cyclically handed-over between the first base station and the second base station.
Abstract:
Systems and methodologies are described that facilitate unbundling and processing partial packet data units (PDU). PDUs can be transmitted at a communication layer and can include partial PDUs of a disparate communication layer. Complete SDUs can be determined in the partial PDU and provided to an upper communication layer. In addition, however, the partial PDU can comprise a partial SDU. Upon receiving a remaining or additional portion of the partial PDU, a remaining or additional portion of the partial SDU can be combined with the partial SDU to create a complete SDU (or a larger portion thereof). Where a complete SDU is created, it can be provided to an upper communication layer. Alternatively, the partial PDU can be combined with the remaining portion of the partial PDU to generate a complete or larger PDU, from which the previously incomplete SDU can be retrieved and provided to an upper communication layer.
Abstract:
Systems and methodologies are described that facilitate creating a packet bundle of Internet Protocol (IP) packets that can be utilized for Just-In-Time (JIT) processing and/or offline processing. In general, upon receipt or detection of incoming IP packets, two or more IP packets can be bundled or packaged together to create a packet bundle. Furthermore, the packet bundle can be created based upon a timer in which a maximum size of the packet bundle and a maximum number of IP packets within a packet bundle can be maintained.
Abstract:
An apparatus and method are disclosed for determining the optimal bandwidth fractions for all the users in each frequency band in a wireless communication system to maximize the net sum of user utilities. User utilities are functions of average rates of users, where different averaging rules can be used for different users. The standard approach of computing an optimal scheduler strategy involves the solution of a convex optimization problem that has a complexity on the order of O(N3) for N flows. This approach is not feasible for online implementation having a large number of flows. The method of the present work employs an efficient computational algorithm that obtains the optimal bandwidth fractions in O(N) time. This feature makes the method suitable for implementation in wideband cellular systems like LTE (Long Term Evolution) and UMB (Ultra Mobile Broadband).