Abstract:
A busbar connection system includes a busbar and a busbar connector having a base and first and second flexible mounting arms extending from the base. The base is secured to the busbar. The first and second flexible mounting arms each have termination portions extending therefrom. The termination portions are configured for mechanical and electrical termination to an electrical component. The flexible mounting arms allow relative movement between the busbar and the electrical component.
Abstract:
A cable backplane system includes a backplane having a plurality of openings extending between a front and a rear of the backplane. The backplane has mounting locations proximate the openings. Mounting blocks are coupled to the front of the backplane at corresponding mounting locations. The mounting blocks are secured to the backplane by fasteners. A cable rack is coupled to the rear of the backplane and has a tray with a frame surrounding a raceway and spacers coupled to the tray. The spacers hold corresponding cable connectors and are secured to corresponding mounting blocks to position the spacers and cable connector assemblies relative to the backplane. The cable connectors are received in corresponding openings in the backplane and are held in position relative to the backplane by the spacers and mounting blocks.
Abstract:
A cable backplane system includes a backplane having a plurality of openings therethrough and a plurality of mounting blocks. A cable rack is coupled to a rear of the backplane and includes a tray having a frame surrounding a raceway. Spacers are coupled to the tray that are secured to corresponding mounting blocks to position the spacers relative to the backplane. Cable connector assemblies are held by the tray. Each cable connector assembly has a plurality of cables extending between at least two cable connectors. The cables are routed in the raceway. Each cable connector assembly is positioned between and supported by corresponding spacers on opposite sides of the cable connector assemblies. The spacers allow limited movement of the cable connectors in at least two directions to allow alignment of the cable connectors within corresponding openings in the backplane.
Abstract:
An electrical system includes a bus bar having a plurality of layers including a conductive power layer and a conductive ground layer. The bus bar has a front edge with a plurality of tabs extending therefrom at spaced-apart locations. Each tab includes a power finger extending from the power layer and a ground finger extending from the ground layer. The bus bar also includes a connector shroud coupled to the front edge of the bus bar. The connector shroud has a base, a mating end, and a cavity defined therebetween. The cavity receives one of the tabs through the base. The mating end is configured to mate with an electrical connector. The cavity is configured to receive power and ground contacts of the electrical connector therein for electrical connection to the respective power and ground fingers of the tab.
Abstract:
A cable backplane system includes a backplane having a plurality of openings therethrough and a cable rack coupled to a rear of the backplane. The cable rack includes a tray having a frame surrounding a raceway and a brick held by the tray. The brick has side spacers at opposite sides of the brick and plates coupled to the side spacers that support a plurality of cable connector assemblies. Each cable connector assembly is positioned between and supported by corresponding plates on opposite sides of the cable connectors with the cable connectors positioned in corresponding openings in the backplane. The plates each include a hem folded over at a rear of the plate. The hem has an edge positioned rearward of the cable connectors and supporting the cable connectors from retreating from the openings in the backplane.
Abstract:
Daughter card assembly including a circuit board and leading and trailing connectors mounted to the circuit board. The leading and trailing connectors have mating ends that face in different directions along a board plane. The daughter card assembly also includes a support wall that is coupled to the circuit board and extends orthogonal to the circuit board. The support wall has a wall opening therethrough. The trailing connector is positioned on the circuit board such that the mating end substantially aligns with the wall opening. The daughter card assembly also includes a retention shroud that projects from an exterior surface of the support wall. The retention shroud defines a shroud passage that aligns with the wall opening. The shroud and wall openings form a receiving passage for receiving at least one of the trailing connector or a corresponding cable connector that mates with the trailing connector.
Abstract:
A cable backplane system includes a backplane having board areas surrounding a connector opening with holes in the board areas along the connector opening. Stiffeners are coupled to corresponding board areas along a front of the backplane. The stiffeners have bores aligned with corresponding holes in the backplane. A cable rack is coupled to the rear of the backplane. The cable rack has a tray with a frame surrounding a raceway and spacers coupled to the tray that hold corresponding cable connectors. The spacers have guide pins extending therefrom that pass through the holes in the backplane into corresponding bores in the stiffeners to position the spacers relative to the stiffeners and the backplane. The cable connectors are received in the connector opening in the backplane and held in position relative to the backplane by the spacers and stiffeners.
Abstract:
A cable backplane system includes a backplane and a cable rack coupled to the backplane. The cable rack includes first and second trays having first and second frames. A plurality of cable connector assemblies are held by the cable rack each having a plurality of cables extending between a first cable connector and a second cable connector. The first cable connector is coupled to the first frame and the second cable connector is coupled to the second frame with the cables routed in first and second raceways of the first and second trays. Float mechanisms are connected between the first and second frames that allow limited movement between the first and second trays. The float mechanisms allow alignment of the cable connectors with corresponding openings in the backplane.
Abstract:
An electrical bridge is provided for electrically connecting first and second electronic modules that include first and second external chassis, respectively. The electrical bridge includes a rigid housing extending along a fixed path from a first end to a second end, and first and second electrical contacts held by the housing. The first and second electrical contacts are positioned at the first and second ends, respectively, of the housing. An electrical pathway is defined within the housing from the first electrical contact to the second electrical contact such that the first and second electrical contacts are electrically connected. The first and second ends of the housing are configured to be mounted to the first and second external chassis, respectively, such that the first and second electrical contacts are configured to mate with, and thereby electrically connect to, the first and second electronic modules, respectively.
Abstract:
A cable assembly includes a first header connector that includes a housing that holds a plurality of contacts. The housing of the first header connector has a first mating interface. The cable assembly also includes a second header connector having a housing that holds a plurality of contacts. The housing of the second header connector has a second mating interface facing in an opposite direction from the first mating interface. The first and second header connectors are identical to one another. A cable bundle has a plurality of cables extending between the first and second header connectors. The cables are connected between the contacts of the first header connector and corresponding contacts of the second header connector.