Abstract:
An assembly is provided that includes a shaft, a bearing, a stator seal element, a rotor seal element and a shield. The shaft extends along an axis. The bearing supports the shaft and receives lubrication fluid. The stator seal element circumscribes the shaft. The rotor seal element is mounted on the shaft axially between the bearing and the stator seal element. The rotor seal element forms a seal with the stator seal element. The shield substantially prevents the lubrication fluid from traveling axially away from the bearing onto the rotor seal element.
Abstract:
An engine health monitoring system includes an engine component having a sensor system configured to monitor at least one parameter of the component. An autonomous monitoring system is coupled to the sensor system and is configured to receive and store the at least one monitored parameter while an engine controller is unpowered. The engine controller is communicatively coupled to the autonomous monitoring system.
Abstract:
A system for a turbine engine includes a turbine engine component, a lubricant collection device and a plurality of lubricant circuits. The lubricant collection device is fluidly coupled with the turbine engine component. The lubricant circuits are fluidly coupled between the lubricant collection device and the turbine engine component. The lubricant circuits include a first circuit and a second circuit configured in parallel with the first circuit. Each of the lubricant circuits includes a lubricant pump. The first and the second circuits receive lubricant from the lubricant collection device, and direct the received lubricant to the turbine engine component.
Abstract:
An assembly is provided for a turbine engine. This turbine engine assembly includes a rotating component, a turbine engine component and a lubrication system. The lubrication system is adapted to lubricate the turbine engine component where the rotating component rotates a first direction about an axis. The lubrication system is also adapted to lubricate the turbine engine component where the rotating component rotates a second direction about the axis.
Abstract:
Oil lubrication systems for use on gas turbine engines are described. The systems include a conduit and an air/oil separator connected to and arranged along the conduit. The air/oil separator comprises includes a housing and a semi-permeable divider within the housing, the semi-permeable divider being permeable to air but not oil. The semi-permeable divider separates a first flow path of an air/oil mixture and a second flow path of low pressure such that air from the air/oil mixture passes through the semi-permeable divider and is removed from the air/oil mixture, and wherein an air-to-oil ratio is less at the second end of the first flow path as compared to the air-to-oil ratio at the first end of the first flow path.
Abstract:
An engine health monitoring system includes an engine component having a sensor system configured to monitor at least one parameter of the component. An autonomous monitoring system is coupled to the sensor system and is configured to receive and store the at least one monitored parameter while an engine controller is unpowered. The engine controller is communicatively coupled to the autonomous monitoring system.
Abstract:
Aspects of the disclosure are directed to a system associated with an engine, comprising: a bearing compartment, a scavenge line coupled to the bearing compartment at a first end of the scavenge line that receives a fluid via the first end of the scavenge line, a fluid pump coupled to the scavenge line at a second end of the scavenge line to receive the fluid, and a flow control valve having a variable flow area and disposed in the scavenge line to control flow of the fluid in the scavenge line and the fluid pump.
Abstract:
A lubrication system is disclosed. The lubrication system may be used in conjunction with a gas turbine engine for generating power or lift. The lubrication system utilized a flow scheduling valve which reduces lubricant flow to at least one component based on an engine load. The lubrication system may further include a main pump which may be regulated by an engine speed. Thus, a lubrication system which provides a lubricant to engine components based on the load and speed of the engine is possible. The system may improve efficiency of the engine by reducing the power previously spent in churning excess lubricant by at least one engine component as well as reducing the energy used by a lubricant cooler in cooling the excess lubricant. The lubricant cooler size may also be minimized to reduce weight and air drag due to the reduced lubricant flow.
Abstract:
A fluid damping structure is provided that includes a damper ring. The damper ring includes an annular body a plurality of fluid check valves, and at least one fluid stop. The annular body extends circumferentially around an axial centerline, and is defined by a first end surface, a second end surface, an outer radial surface, and an inner radial surface. The outer radial surface and the inner radial surface extend axially from the first end surface toward the second end surface. The body includes one or more check valve passages. Each check valve passage extends axially from an open end disposed at the first end surface inwardly toward the second end surface, and is disposed between the inner radial surface and the outer radial surface. An inlet aperture extends between each check valve passage and the outer radial surface, and an outlet aperture extends between each check valve passage and the inner radial surface. Each fluid check valve is disposed in a check valve passage. The at least one fluid stop is configured to prevent fluid exit from the open end of each check valve passage.
Abstract:
An engine health monitoring system includes an engine component having a sensor system configured to monitor at least one parameter of the component. An autonomous monitoring system is coupled to the sensor system and is configured to receive and store the at least one monitored parameter while an engine controller is unpowered. The engine controller is communicatively coupled to the autonomous monitoring system.