Abstract:
The present disclosure relates generally to a guide vane assembly including a first airfoil, including a first airfoil trailing edge, a second airfoil, including a second airfoil leading edge, positioned aft the first airfoil to create a gap therebetween, and a seal assembly disposed within the gap to engage the first airfoil trailing edge and the second airfoil leading edge.
Abstract:
Disclosed is a gas turbine engine including a compressor section in communication with a bleed flow path. A rotary valve is provided in communication with the bleed flow path to selectively regulate a flow of fluid within the bleed flow path.
Abstract:
One embodiment of the face seal described herein includes a seal seat and a seal element carried by a seal housing. The seal element cooperates with the seal seat to establish a seal. The housing includes a seal element support and a shroud. The shroud includes a stem and a tip, and the tip is an insert secured to the stem.
Abstract:
A turbine is operably connected to drive a compressor, and to drive a fan through a gear drive. A number of intermediate gears connecting an output shaft of the turbine to a fan drive shaft for the fan. An oil channel collects oil thrown outwardly of the gear drive. A bearing support mounts bearings supporting the fan drive shaft. The oil channel and the bearing support each include mating faces that are bolted together by a plurality of bolts. The bolts extend through oil channel holes in the mating face of the oil channel. The oil channel holes have one dimension which closely receives the bolts and another dimension which is larger than an outer diameter of the extending portion of the bolts, such that the bolts may adjust radially within the oil channel holes.
Abstract:
A high pressure compressor section of a gas turbine engine including: an inner case separating a core flow path of the gas turbine engine and a plenum formed between the inner case and an outer case; a bleed port located on an inner surface of the inner case, the inner surface being proximate the core flow path; an outlet located on an outer surface of the inner case, the outer surface being proximate the plenum; and a bleed air passageway passing through the inner case to fluidly connect the bleed port to the outlet, wherein the bleed air passageway is fluidly connected to the core flow path through the bleed port and the bleed air passageway is fluidly connected to the plenum through the outlet.
Abstract:
A tie shaft assembly for a gas turbine engine includes a compressor tie shaft that has an upstream end and a downstream end. The downstream end includes a radially outer threaded surface and a radially inner threaded surface. A turbine tie shaft has an upstream end with a radially outer threaded surface in engagement with the radially inner threaded surface on the compressor tie shaft.
Abstract:
A seal comprises a housing. A coating has at least two layers with a bond layer to be positioned between a housing and a second hard layer. The second hard layer is formed to be harder than the bond layer. The bond layer has a bond strength greater than or equal to 200 psi and less than or equal to 2000 psi. A gas turbine engine, and a method of forming a coating layer are also disclosed.
Abstract:
A high pressure compressor section of a gas turbine engine including: an inner case separating a core flow path of the gas turbine engine and a plenum formed between the inner case and an outer case; a bleed port located on an inner surface of the inner case, the inner surface being proximate the core flow path; an outlet located on an outer surface of the inner case, the outer surface being proximate the plenum; and a bleed air passageway passing through the inner case to fluidly connect the bleed port to the outlet, wherein the bleed air passageway is fluidly connected to the core flow path through the bleed port and the bleed air passageway is fluidly connected to the plenum through the outlet.
Abstract:
A gas turbine engine includes a bearing support ring with a first annular body and a second annular body disposed radially inward of the first annular body. A radial spring is connected to the first annular body and the second annular body. The gas turbine engine includes a frame with a case that extends around the first annular body. The frame includes an annular member connected to the case and positioned radially between the radial spring and the second annular body. A fluid port extends radially through the annular member. A seal is disposed around the annular member and forward of the fluid port. A first fluid passage extends through the case. A second fluid passage is formed between the bearing support ring and the frame and extends from the first fluid passage to the fluid port. A bearing outer race is disposed inward of the second annular body.
Abstract:
A gas turbine engine is disclosed. The gas turbine engine includes a first rotor supporting a first plurality of circumferentially spaced rotor blades and a second rotor disposed axially downstream of the first rotor and supporting a second plurality of circumferentially spaced rotor blades, a first bore cavity between the first rotor and the second rotor, a first fluid passageway configured to provide cooled air to the first bore cavity and a first anti-vortex component positioned proximate the first bore cavity and configured to increase pressure of the cooled air as the cooled air traverses radially outward from the first bore cavity.