Abstract:
The present disclosure provides systems and methods related to thermal management systems for gas turbine engines. For example, a thermal management system comprises a thermally neutral heat transfer fluid circuit, a first heat exchanger disposed on the fluid circuit, and a second heat exchanger disposed on the fluid circuit.
Abstract:
A gas turbine engine comprises a compressor section and a turbine section, the compressor section having a last compressor stage. High pressure cooling air is tapped from a location downstream of the last compressor stage and passed through a heat exchanger. Lower pressure air passes across the heat exchanger to cool the high pressure cooling air. A housing surrounds the compressor section and the turbine section and there being a space radially outwardly of the housing, and a mixing chamber received in the space radially outwardly of the housing, the mixing chamber receiving the high pressure cooling air downstream of the heat exchanger, and further receiving air at a temperature higher than a temperature of the high pressure cooling air downstream of the heat exchanger. Mixed air from the mixing chamber is returned into the housing and utilized to cool at least the turbine section.
Abstract:
A gas turbine engine comprises a lower pressure compressor and a higher pressure compressor. A single turbine drives both the lower pressure compressor and the higher pressure compressor through a gear reduction. The gear reduction includes an actuator and at least two available speeds, such that the lower pressure compressor can selectively be operated at either of at least two speeds relative to the higher pressure compressor. A method of operating a gas turbine engine is also disclosed.
Abstract:
A pulse detonation combustor may include a valve and a tubular combustor wall, which forms an airflow inlet and a combustion chamber. The valve may be configured to selectively fluidly couple the airflow inlet with the combustion chamber. The valve may include a center body and an annular projection. The center body and the projection may be configured to sealingly engage with one another.
Abstract:
A rotor for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a rotor disk rotatable about an axis and a gas path wall coupled to and radially outward of the rotor disk. The gas path wall bounds a radially inward portion of a gas path. A plurality of rotor spokes are radially intermediate the rotor disk and the gas path wall. The plurality of rotor spokes is circumferentially spaced to define a plurality of cooling channels intermediate the rotor disk and the gas path wall. A thermal barrier coating is disposed on a surface of at least one of the plurality of cooling channels. A method of cooling a rotor assembly is also disclosed.
Abstract:
A rotor for a gas turbine engine includes a plurality of blades which extend from a rotor disk, adjacent ones of the plurality of blades are joined by a flexible web.
Abstract:
A blade for a gas turbine engine includes a body that includes an airfoil that extends in a radial direction from a 0% span position near an airfoil base to a 100% span position at an airfoil tip. The airfoil has a leading edge and a trailing edge that define the true chord length. The airfoil includes a first portion near the airfoil base with a first density and a second portion near the airfoil tip with a second density. The second density is less than the first density. The second portion includes an increasing true chord length in the radial direction. The second portion is in the range of 90% span to 100% span.
Abstract:
A turbine injection system for a gas turbine engine includes a first end operable to receive air from a heat exchanger, a second end operable to distribute mixed cooling air to a turbine stage, an opening downstream of said first end and a mixing plenum downstream of said first end and said opening. The opening provides a direct fluid pathway into said turbine injection system.
Abstract:
An engine includes an elongated pulse detonation combustor tube having an arcuate combustion path over a majority of an entire length of the combustor tube, and an elongated portion of the combustor tube being oriented transverse to a central axis of the engine.
Abstract:
A cooling system is provided. The cooling system may comprise a heat exchanger and a first conduit fluidly coupled to an outlet of the heat exchanger. An annular passage may be fluidly coupled to the first conduit. A tangential onboard injector (TOBI) may be fluidly coupled to the annular passage. A gas turbine engine is also provided and may comprise a compressor, a combustor in fluid communication with the compressor, and a diffuser around the combustor and a turbine. A heat exchanger may have an inlet fluidly coupled to the diffuser. A second conduit may be fluidly coupled to an outlet of the heat exchanger. An annular passage may be fluidly coupled to the second conduit. A tangential onboard injector (TOBI) may be fluidly coupled to the annular passage.