Abstract:
An aircraft includes a propulsor supported within an aft portion of the fuselage. A thrust reverser is supported proximate the propulsor for redirecting thrust forward to slow the aircraft upon landing. A tail extending from the aft portion of the fuselage is angled forward away from the aft portion and out of the discharge of airflow from the thrust reverser.
Abstract:
An arrangement for reducing drag on the body of an aircraft with a relatively wide fuselage comprises a gas turbine engine. At least one duct is selectively moveable between a closed position and an open position, such that the at least one duct allows airflow to move toward a fan rotor in the gas turbine engine in the open position, but blocks airflow when in the closed position. An aircraft body is also disclosed.
Abstract:
A gas turbine engine for mounting under a wing of an aircraft has a propulsor that rotates on a first axis, and an engine core including a compressor section, a combustor section, and a turbine section, with the turbine section being closer to the propulsor than the compressor section. The engine core is aerodynamically connected to the propulsor and has a second axis. A nacelle is positioned around the propulsor and engine core. The nacelle is attached to the wing of the aircraft. A downstream end of the nacelle has at least one pivoting door with an actuation mechanism to pivot the door between a stowed position and a horizontal deployed position in which the door inhibits a flow to provide a thrust reverse of the flow.
Abstract:
A gas turbine engine includes a first annular portion that is stationary and adapted for partially surrounding an engine core. The first annular portion includes a fore pylon connecting portion. The gas turbine engine also includes a rail coupled to the fore pylon and extending in the aft direction from the first annular portion. The gas turbine engine also includes a second annular portion, arranged aft of the first portion and coupled to the rail. The second annular portion is movable along an engine core centerline between a closed position and at least one open position. The second annular portion is configured to engage the first annular portion in the closed position, thereby providing access to the engine core. The gas turbine engine further comprises a thrust reverser arranged in the second annular portion.
Abstract:
A gas turbine engine comprises a main compressor section having a high pressure compressor with a downstream discharge, and more upstream locations. A turbine section has a high pressure turbine. A tap taps air from at least one of the more upstream locations in the compressor section, passing the tapped air through a heat exchanger and then to a cooling compressor. The cooling compressor compresses air downstream of the heat exchanger, and delivers air into the high pressure turbine. The heat exchanger also receives air to be delivered to an aircraft cabin. An intercooling system for a gas turbine engine is also disclosed.
Abstract:
A gas turbine engine has a first shaft including a first turbine rotor, and a second shaft including a second turbine rotor disposed downstream of the first turbine rotor. A third shaft includes a propulsor turbine positioned downstream of the second turbine rotor for driving a propeller. A mount ring is secured between the second turbine rotor and the propeller.
Abstract:
A core engine includes a compressor section, a combustor and a turbine section, with the turbine section being closest to a fan, the combustor section and then the compressor section being positioned further away from the fan relative to the turbine section. A downstream end of a nozzle has at least one pivoting shell and an actuator pivots the shell between a stowed position and a deployed position. A mount bracket is mounted at one circumferential location of the engine. The shell moves in a direction having at least a component perpendicular to a vertical direction defined perpendicular to a top surface of the mount bracket.
Abstract:
A gas turbine engine nacelle includes a first annular portion that is stationary and adapted for partially surrounding an engine core. The first annular portion includes a fore pylon connecting portion. A rail is coupled to the fore pylon connecting portion and extends in the aft direction from the first annular portion. A second annular portion is positioned aft of the first portion and coupled to the rail. The second portion is movable along an engine core centerline between a closed position and at least one open position. The second annular portion is configured to engage with the first annular portion in the closed position, thereby providing access to the engine core. A mating axial groove and rib connection is located between the first annular portion and the second annular portion.
Abstract:
A gas turbine engine includes a first annular portion that is stationary and adapted for partially surrounding an engine core. The first annular portion includes a fore pylon connecting portion. A rail is coupled to the fore pylon portion and extends in the aft direction from the stationary portion. A second annular portion is positioned aft of the first portion and coupled to the rail, the second portion being movable along an engine core centerline between a closed position and an open position, wherein the second annular portion is configured to engage with the first annular portion in the closed position to provide access to an engine core. The second annular portion includes a nozzle plug.
Abstract:
One embodiment includes a pivot thrust reverser. The pivot thrust reverser includes a first tandem pivot door subassembly comprising an inner panel and an outer panel. The inner panel and the outer panel are connected so as to rotate simultaneously about respective pivot axises that are each positionally fixed axises relative to the gas turbine engine assembly. A second tandem pivot door subassembly is included, spaced from the first tandem pivot door subassembly and comprising an inner panel and an outer panel. The inner panel and the outer panel are connected so as to rotate simultaneously about respective pivot axises that are each positionally fixed axises relative to the gas turbine engine assembly.