Abstract:
A method for distributing liquid in a gas turbine engine is disclosed. The method includes rotating a fan shaft coupled to a spool via a fan drive gear system. The spool drives rotation of the fan shaft through the fan drive gear system during operation of the gas turbine engine. A pump is driven via the fan shaft. Liquid is supplied from a sump to the pump under a first operating condition. Liquid is supplied from an auxiliary reservoir to the pump under a second operating condition. Liquid is pumped to a damper.
Abstract:
Aspects of the disclosure are directed to an assembly associated with an engine of an aircraft, comprising a bolt comprising at least one groove, and at least one seal seated within the at least one groove, where the at least one seal is configured to seal radially against a counter bore that the bolt is coupled to. Aspects of the disclosure are directed to a bolt comprising a head, a first groove formed in a first side of the head and configured to seat a first seal, and an internal feature formed in the head and interfacing with a surface of the head, where the internal feature is configured to enable the bolt to be tightened.
Abstract:
A gas turbine engine is provided. The gas turbine engine may include a geared architecture, a central body support and a bearing package. The geared architecture may interconnect a spool and a fan rotatable about an axis. The central body support may provide an annular wall for a core flow path and an integral flex support inwardly extending therefrom. The integral flex support may couple the geared architecture to the central body support. The bearing package may include a bearing support removably coupled to the integral flex support.
Abstract:
A gas turbine engine includes a core housing that includes an inlet case and an intermediate case that respectively provide an inlet case flow path and an intermediate case flow path. A first shaft supports a low pressure compressor section that is arranged axially between the inlet case flow path and the intermediate case flow path. A first bearing supports the first shaft relative to the inlet case. A second bearing supports a second shaft relative to the intermediate case. A low pressure compressor hub is mounted to the first shaft. The low pressure compressor hub extends to the low pressure compressor section between the first bearing and the second bearing.
Abstract:
A bearing compartment of a gas turbine engine includes a rotationally fixed structure defined about an engine longitudinal axis; a gutter section formed in the front support; an oil drainback assembly mountable to the gutter section to direct oil into a drain passage to communicate oil from the gutter.
Abstract:
A compliant jumper tube fitting assembly may comprise an outer housing comprising a first annular cylindrical structure including a first opening defined by a base wall, and an inner housing comprising a second annular cylindrical structure including a second opening defined by an annular wall, wherein the inner housing is configured to generate a seal between an inner diameter wall of the outer housing and an outer diameter wall of the inner housing in response to inserting the inner housing into a mouth end of the outer housing, wherein the inner housing is configured to receive an end fitting and generate a seal between an inner diameter wall of the inner housing in response to inserting the end fitting into the inner housing.
Abstract:
A gas turbine engine component includes an inner support structure surrounding an engine center axis and fixed to an engine static structure, an outer support structure spaced radially outward of the inner support structure, and a curved beam comprised of a plurality of curved beam spring segments that are positioned adjacent to each other to form a ring. The inner and outer support structures are coupled together around the curved beam to enclose the curved beam therebetween and form an assembly. A bearing is spaced radially inward of the assembly.
Abstract:
A bearing compartment of a gas turbine engine includes a rotationally fixed structure defined about an engine longitudinal axis; a gutter section formed in the front support; an oil drainback assembly mountable to the gutter section to direct oil into a drain passage to communicate oil from the gutter.