Abstract:
The disclosure herein describes an edge device of a network for distributed policy enforcement. During operation, the edge device receives an initial packet for an outgoing traffic flow, and identifies a policy being triggered by the initial packet. The edge device performs a reverse lookup to identify at least an intermediate node that is previously traversed by the initial packet and traffic parameters associated with the initial packet at the identified intermediate node. The edge device translates the policy based on the traffic parameters at the intermediate node, and forwards the translated policy to the intermediate node, thus facilitating the intermediate node in applying the policy to the traffic flow.
Abstract:
Techniques for dynamic configuration of a domain name system (DNS) server in a virtual network environment are described. In one example embodiment, DNS rules are configured using virtual machine (VM) inventory objects and associated DNS names. Further, the configured DNS rules are transformed by replacing the VM inventory objects in the configured DNS rules with associated Internet protocol (IP) addresses using an IP address management (IPAM) table or a network address translation (NAT) table and the DNS names in the configured DNS rules with modified DNS names using a zone table and a view table. Furthermore, the transformed DNS rules are sent to the DNS server for performing domain name resolutions associated with multiple VMs running on a plurality of host computing systems in a computing network.
Abstract:
Techniques for dynamically configuring a dynamic host configuration protocol (DHCP) server in a virtual network environment are described. In one example embodiment, DHCP bindings are configured using virtual machine (VM) inventory objects. Further, the configured DHCP bindings are transformed by replacing the VM inventory objects in the configured DHCP bindings with associated media access control (MAC) addresses using a VM object attribute table. Furthermore, the transformed DHCP bindings are sent to the DHCP sever for assigning Internet protocol (IP) addresses to multiple VMs running on a plurality of host computing systems in a computing network.
Abstract:
Techniques for automatic firewall configuration in a virtual network environment are described. In one example embodiment, firewall rules are configured using virtual machine (VM) inventory objects. The firewall rules are then transformed by replacing the VM inventory objects in the configured firewall rules with associated Internet protocol (IP) addresses using an IP address management table (IPAM) table and a network address translation (NAT) table. The transformed firewall rules are then sent to a firewall engine for filtering communication from and to VMs running on a first machine on one or more computing networks and communication from and to VMs running on a second machine on one or more computing networks at a firewall according to the transformed firewall rules.
Abstract:
The disclosure herein describes an edge device of a network for distributed policy enforcement. During operation, the edge device receives an initial packet for an outgoing traffic flow, and identifies a policy being triggered by the initial packet. The edge device performs a reverse lookup to identify at least an intermediate node that is previously traversed by the initial packet and traffic parameters associated with the initial packet at the identified intermediate node. The edge device translates the policy based on the traffic parameters at the intermediate node, and forwards the translated policy to the intermediate node, thus facilitating the intermediate node in applying the policy to the traffic flow.
Abstract:
The disclosure provides a method for diagnosing remote sites of a distributed container orchestration system. The method generally includes receiving a test suite custom resource defining an image to be used for a diagnosis of components of a workload cluster deployed at the remote sites, wherein the image comprises a diagnosis module and/or a user-provided plugin to be used for the diagnosis; identifying a failed component in the workload cluster; obtaining infrastructure information about the workload cluster; identifying the components of the workload cluster for diagnosis based on the failed component, the infrastructure information, and the test suite custom resource; identifying at least one diagnosis site of the remote sites where the components are running using the infrastructure information; and deploying a first pod at the at least one diagnosis site to execute the diagnosis of the one or more components.
Abstract:
An example method of propagating fault domain topology information in a distributed container orchestration system includes: receiving, at control plane software executing in a data center, the fault domain topology, which includes tags for a protection group and fault domains for remote sites in communication with the data center; deploying, by a master server of the distributed container orchestration system that executes in the data center, a node pool comprising virtual machines (VMs) executing in servers of the remote sites, the VMs being nodes of the distributed container orchestration system in which containers execute; determining, by a controller of the master server, relationships among the VMs, the servers, the protection group, and the fault domains based on state of resources maintained by the master server; and providing, by the controller, labels to the servers for associating the tags of the protection group and the fault domains to the VMs.
Abstract:
A computer-implemented method, medium, and system for upgrade of telco node cluster running cloud-native network functions are disclosed. In one computer-implemented method, a worker node group that includes a plurality of worker nodes is determined in a container orchestration platform. A first node to upgrade is determined within the worker node group. All pods in the first node are deactivated by a high availability as a service (HAaaS) module. Standby pods in a second node are activated by the HAaaS module and as active pods. All network traffic associated with all the pods in the first node is migrated to the active pods. The first node is deleted from the worker node group. Hardware resources associated with running the first node are released. A third node is generated as a new worker node in the worker node group and uses the released hardware resources.
Abstract:
Some embodiments provide various methods for offloading operations in an O-RAN (Open Radio Access Network) onto control plane (CP) or edge applications that execute on host computers with hardware accelerators in software defined datacenters (SDDCs). At the CP or edge application operating on a machine executing on a host computer with a hardware accelerator, the method of some embodiments receives data, from an O-RAN E2 unit, to perform an operation. The method uses a driver of the machine to communicate directly with the hardware accelerator to direct the hardware accelerator to perform a set of computations associated with the operation. This driver allows the communication with the hardware accelerator to bypass an intervening set of drivers executing on the host computer between the machine's driver and the hardware accelerator. Through this driver, the application in some embodiments receives the computation results, which it then provides to one or more O-RAN components (e.g., to the E2 unit that provided the data, another E2 unit or another control plane or edge application).
Abstract:
Connectivity between data centers in a hybrid cloud system is optimized by pre-loading a wide area network (WAN) optimization appliance in a first data center with data to initialize at least one WAN optimization of application. The first data center is managed by a first organization and a second data center managed by a second organization, the first organization being a tenant in the second data center. The described technique includes receiving application packets having the application data generated by an application executing in the first data center at the WAN optimization appliance from a first gateway in the first data center, and performing the at least one WAN optimization on the application packets using the pre-loaded data to initialize the at least one WAN optimization.