Abstract:
A method for determining a temperature of an object includes contacting the object with a first electrical conductor. A difference in electronegativity between the object and the first electrical conductor is greater than a predetermined value. The method also includes contacting the object or a substrate on which the object is positioned with a second electrical conductor. A difference in electronegativity between the object or the substrate and the second electrical conductor is less than the predetermined value. The method also includes connecting the first and second electrical conductors together. The method also includes measuring the temperature of the object using the first and second electrical conductors. The first and second electrical conductors form at least a portion of a thermocouple.
Abstract:
A method operates a three-dimensional (3D) metal object manufacturing system to maintain a temperature of an uppermost layer of a 3D metal object being formed within a temperature range conducive for bonding between the uppermost layer and a next layer to be formed. A controller of the system compares a temperature of the uppermost layer with at least a low end temperature of the temperature range and operates an electrical resistance switching network using 3D model data to provide electrical power selectively to heating elements in a modular heater to heat the 3D metal object being formed when the temperature indicated by the signal from the sensor is less than the predetermined temperature.
Abstract:
A slicer in a material drop ejecting three-dimensional (3D) object printer generates machine ready instructions that operate components of a printer, such as actuators and an ejector having at least one nozzle, to form features of an object more precisely than previously known. The instructions generated by the slicer control the actuators to move the ejector and a platform on which the object is formed relative to one another at a constant velocity to form edges of the feature.
Abstract:
An object printed by a three-dimensional (3D) printer includes a plurality of layers of material printed by the 3D printer. The layers of material bond together to form the object as the layers of material cool and solidify after being printed by the 3D printer. The object also includes a temperature sensor placed in contact with one or more of the layers when the layers of material are being printed by the 3D printer. The temperature sensor remains in contact with the object after the layers of material cool and solidify to form the object. The temperature sensor is configured to measure a temperature of the object after the layers of material cool and solidify to form the object.
Abstract:
An object printed by a three-dimensional (3D) printer includes a plurality of layers of material printed by the 3D printer. The layers of material bond together to form the object as the layers of material cool and solidify after being printed by the 3D printer. The object also includes a temperature sensor placed in contact with one or more of the layers when the layers of material are being printed by the 3D printer. The temperature sensor remains in contact with the object after the layers of material cool and solidify to form the object. The temperature sensor is configured to measure a temperature of the object after the layers of material cool and solidify to form the object.
Abstract:
A method for determining a temperature of an object includes contacting the object with a first electrical conductor. A difference in electronegativity between the object and the first electrical conductor is greater than a predetermined value. The method also includes contacting the object or a substrate on which the object is positioned with a second electrical conductor. A difference in electronegativity between the object or the substrate and the second electrical conductor is less than the predetermined value. The method also includes connecting the first and second electrical conductors together. The method also includes measuring the temperature of the object using the first and second electrical conductors. The first and second electrical conductors form at least a portion of a thermocouple.
Abstract:
A system for determining a temperature of an object includes a three-dimensional (3D) printer configured to successively deposit a first layer of material, a second layer of material, and a third layer of material to form the object. The 3D printer is configured to form a recess in the second layer of material. The material is a metal. The system also includes a temperature sensor configured to be positioned at least partially with the recess and to have the third layer deposited thereon. The temperature sensor is configured to measure a temperature of the first layer of material, the second layer of material, the third layer of material, or a combination thereof.
Abstract:
A sheet stacking apparatus includes a frame, a round member directly or indirectly connected to the frame, and an arm directly or indirectly connected to the frame. The arm is rotatable to rotate between a first position and a second position. The arm is positioned to bias sheets toward the round member when in the first position, and the arm is positioned to bias the sheets away from the round member when in the second position.
Abstract:
A media transport system includes a drum with a plurality of rows of holes, a vacuum plenum, and a shutter. The vacuum plenum is positioned within the drum at a position opposite a printhead and the shutter is configured for movement in a cross-process direction. Each row of holes in the drum includes at least one inter-copy gap. The shutter includes a solid member having at least one aperture in it. The shutter is moved to a position so the aperture is aligned with a row of holes and the solid portion of the shutter prevents a flow of air through the vacuum plenum from the holes in other rows of holes not aligned with the aperture in the shutter and the inter-copy gaps in the row of holes aligned with the aperture selectively prevents air flow to the vacuum plenum.
Abstract:
A printer attenuates banding visual defects arising from a lack of flatness in media as ink is ejected onto the media. The printer includes a detector that generates a signal corresponding to the slope in the media and a controller that modulates a volume of the ink drops ejected by one or more printheads in the vicinity of the slope in the media.