Abstract:
A method of analyzing a printed test pattern includes printing first and second rows of marks, each row including at least two pluralities of marks. A gap between two pluralities of marks in the first row is located in a first position in a cross-process direction that is different than a second position of another gap between pluralities of marks in the second row. A controller identifies the first row of marks with reference to a predetermined set of image data corresponding to the first row of marks including the first plurality of marks, the second plurality of marks, and the gap in the first row.
Abstract:
An apparatus detects inoperative inkjets during printing. The apparatus operates the printhead or printheads in the printer to form test pattern on a thermal substrate. The heat of the materials used to form the test pattern change the optical density of the areas where the materials land. The area where the test pattern is formed is imaged and the image data are analyzed to identify inoperative inkjets.
Abstract:
An apparatus detects inoperative inkjets during printing. The apparatus operates the printhead or printheads in the printer to form test pattern on a thermal substrate. The heat of the materials used to form the test pattern change the optical density of the areas where the materials land. The area where the test pattern is formed is imaged and the image data are analyzed to identify inoperative inkjets.
Abstract:
A method for printhead location identification includes identifying a plurality of amplitudes for a portion of pixel columns in image data generated from a portion of an image receiving surface in which marks formed by an inkjet in the printhead are printed. The amplitudes are generated from a portion of each pixel column including expected locations for a portion of the printed marks in a process direction. The method further includes identifying a cross-process location of the inkjet from a pixel column corresponding to a pixel column with a maximum local amplitude value and storing the location of the inkjet in a memory for printhead registration.
Abstract:
A printer forms a three-dimensional object on a rotating substrate. The printer includes a frame that supports a cylindrical member and at least one printhead such that the first printhead is positioned to eject material onto an outer surface of the cylindrical member. The frame is movable between a first position that rotatably supports the cylindrical member and a second position that enables transfer of the cylindrical member to and from the frame. A controller operates the printhead to eject material onto the rotating cylindrical member to form the object. The controller interpolates a periodic signal generated from a position encoder to adjust the operation of the printhead based on the rotational position and velocity of the cylindrical member. The controller operates a driver to move the frame to the second position to enable removal of the cylindrical member from the printer.
Abstract:
An apparatus and method for compensating for variation of the image placement for each color station in an intermediate transfer drum system. A sensor detects the image placed by the previous station and triggers the imaging on the drum such that it properly registered to the previous image. However, the variation of the drum's radius results in runout which creates an error in the image placement, since the surface drum travel will be larger or smaller than expected. The method to correct for a lead edge offset for radial runout involves dividing the drum into regions and calculating an offset center of each region. As the drum transitions from region to region the offset value is updated to determine when to start imaging for proper placement on the sheet. The offset can be derived from the image runout to find the distance traveled from the transfer point or can be measured directly from color-to-color registration variation.
Abstract:
Access is provided to a variable data printing app and a code detection app on a computer server. The variable data printing app is adapted to add machine-readable code to printable items and create a decoder app capable of decoding the machine-readable code. The code detection app is adapted to receive user identification information and transmit the user identification information to designer devices. The printable items are printed as printed products. The designer devices validate a user device based on the validity of the user identification information. In response, the variable data printing app is adapted to transmit the decoder app to validated user devices. The code detection app, operating on the user device, is adapted to decode the machine-readable code in user-acquired images into an optional secure link with the designer devices.
Abstract:
A printer forms a three-dimensional object on a rotating substrate. The printer includes a frame that supports a cylindrical member and at least one printhead such that the first printhead is positioned to eject material onto an outer surface of the cylindrical member. The frame is movable between a first position that rotatably supports the cylindrical member and a second position that enables transfer of the cylindrical member to and from the frame. A controller operates the printhead to eject material onto the rotating cylindrical member to form the object. The controller interpolates a periodic signal generated from a position encoder to adjust the operation of the printhead based on the rotational position and velocity of the cylindrical member. The controller operates a driver to move the frame to the second position to enable removal of the cylindrical member from the printer.
Abstract:
An apparatus detects inoperative inkjets during printing. The apparatus operates the printhead or printheads in the printer to form test pattern on a thermal substrate. The heat of the materials used to form the test pattern increase the optical density of the areas where the materials land. The area where the test pattern is formed is imaged and the image data are analyzed to identify inoperative inkjets.
Abstract:
A method of identifying inoperable ejectors in a printhead includes operating a plurality of ejectors in the printhead to form a printed test pattern on an image receiving surface while the printhead and image receiving surface remain stationary. The method also includes generating image data of the printed test pattern, identifying rows of marks in the printed test pattern, and identifying an inoperable ejector in the printhead that corresponds to a missing mark in one row of marks that corresponds to one ejector in a row of ejectors in the printhead.