Method and system for detection of contrast injection in fluoroscopic image sequences
    22.
    发明授权
    Method and system for detection of contrast injection in fluoroscopic image sequences 有权
    荧光图像序列中对比度注入检测方法和系统

    公开(公告)号:US08194955B2

    公开(公告)日:2012-06-05

    申请号:US12231770

    申请日:2008-09-05

    IPC分类号: G06K9/00

    摘要: A method and system for detecting a spatial and temporal location of a contrast injection in a fluoroscopic image sequence is disclosed. Training volumes generated by stacking a sequence of 2D fluoroscopic images in time order are annotated with ground truth contrast injection points. A heart rate is globally estimated for each training volume, and local frequency and phase is estimated in a neighborhood of the ground truth contrast injection point for each training volume. Frequency and phase invariant features are extracted from each training volume based on the heart rate, local frequency and phase, and a detector is trained based on the training volumes and the features extracted for each training volume. The detector can be used to detect the spatial and temporal location of a contrast injection in a fluoroscopic image sequence.

    摘要翻译: 公开了一种用于检测透视图像序列中的对比度注入的空间和时间位置的方法和系统。 通过以时间顺序堆叠一系列2D透视图像而产生的训练体积用地面真实对比度注入点注释。 对于每个训练体积,全局估计心率,并且在每个训练体积的地面真实对比度注入点的邻域中估计局部频率和相位。 基于心率,局部频率和相位从每个训练体积中提取频率和相位不变特征,并且基于训练量和针对每个训练体积提取的特征来训练检测器。 检测器可用于检测透视图像序列中对比度注入的空间和时间位置。

    System and method for detecting an object in a high dimensional space
    25.
    发明授权
    System and method for detecting an object in a high dimensional space 有权
    用于检测高维空间中的对象的系统和方法

    公开(公告)号:US08009900B2

    公开(公告)日:2011-08-30

    申请号:US11856208

    申请日:2007-09-17

    IPC分类号: G06K9/00 G06K9/62

    CPC分类号: G06K9/6292

    摘要: A system and method for detecting an object in a high dimensional image space is disclosed. A three dimensional image of an object is received. A first classifier is trained in the marginal space of the object center location which generates a predetermined number of candidate object center locations. A second classifier is trained to identify potential object center locations and orientations from the predetermined number of candidate object center locations and maintaining a subset of the candidate object center locations. A third classifier is trained to identify potential locations, orientations and scale of the object center from the subset of the candidate object center locations. A single candidate object pose for the object is identified.

    摘要翻译: 公开了一种用于检测高维图像空间中的对象的系统和方法。 接收对象的三维图像。 在对象中心位置的边缘空间中训练第一分类器,其生成预定数量的候选对象中心位置。 训练第二分类器以从预定数量的候选对象中心位置识别潜在对象中心位置和方向,并维护候选对象中心位置的子集。 训练第三分类器以从候选对象中心位置的子集中识别对象中心的潜在位置,方向和尺度。 识别对象的单个候选对象姿势。

    System and method for detection of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree
    26.
    发明授权
    System and method for detection of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree 有权
    使用约束概率增强树从超声图像中检测胎儿解剖结构的系统和方法

    公开(公告)号:US07995820B2

    公开(公告)日:2011-08-09

    申请号:US12056107

    申请日:2008-03-26

    IPC分类号: G06K9/00

    摘要: A method for detecting fetal anatomic features in ultrasound images includes providing an ultrasound image of a fetus, specifying an anatomic feature to be detected in a region S determined by parameter vector θ, providing a sequence of probabilistic boosting tree classifiers, each with a pre-specified height and number of nodes. Each classifier computes a posterior probability P(y|S) where yε{−1,+1}, with P(y=+1|S) representing a probability that region S contains the feature, and P(y=−1|S) representing a probability that region S contains background information. The feature is detected by uniformly sampling a parameter space of parameter vector θ using a first classifier with a sampling interval vector used for training said first classifier, and having each subsequent classifier classify positive samples identified by a preceding classifier using a smaller sampling interval vector used for training said preceding classifier. Each classifier forms a union of its positive samples with those of the preceding classifier.

    摘要翻译: 一种用于检测超声图像中的胎儿解剖特征的方法,包括提供胎儿的超声图像,指定在由参数矢量和姿势确定的区域S中要检测的解剖特征;提供一系列概率增强树分类器,每个具有预先 指定的高度和节点数。 每个分类器计算出一个后验概率P(y | S),其中y(e)= { - 1,+ 1},其中P(y = + 1 | S)表示区域S包含特征的概率,P(y = -1 | S),表示区域S包含背景信息的概率。 通过对参数矢量和参数的参数空间进行均匀采样来检测该特征; 使用具有用于训练所述第一分类器的采样间隔向量的第一分类器,并且每个后续分类器使用用于训练所述先前分类器的较小采样间隔向量来对由先前分类器标识的正样本进行分类。 每个分类器形成其正样本与上一分类器的并集。

    Method and system for regression-based object detection in medical images
    27.
    发明授权
    Method and system for regression-based object detection in medical images 有权
    医学图像中基于回归的物体检测方法与系统

    公开(公告)号:US07949173B2

    公开(公告)日:2011-05-24

    申请号:US11866572

    申请日:2007-10-03

    IPC分类号: G06K9/00 A61B6/00

    摘要: A method and system for regression-based object detection in medical images is disclosed. A regression function for predicting a location of an object in a medical image based on an image patch is trained using image-based boosting ridge regression (IBRR). The trained regression function is used to determine a difference vector based on an image patch of a medical image. The difference vector represents the difference between the location of the image patch and the location of a target object. The location of the target object in the medical image is predicted based on the difference vector determined by the regression function.

    摘要翻译: 公开了一种用于医学图像中基于回归的物体检测的方法和系统。 使用基于图像的增强脊回归(IBRR)训练用于基于图像块预测医学图像中的对象的位置的回归函数。 训练回归函数用于基于医学图像的图像块来确定差分矢量。 差分向量表示图像块的位置与目标对象的位置之间的差异。 基于由回归函数确定的差分向量来预测目标对象在医学图像中的位置。

    System and method for using a similarity function to perform appearance matching in image pairs
    28.
    发明授权
    System and method for using a similarity function to perform appearance matching in image pairs 有权
    使用相似度函数执行图像对中的外观匹配的系统和方法

    公开(公告)号:US07831074B2

    公开(公告)日:2010-11-09

    申请号:US11539989

    申请日:2006-10-10

    IPC分类号: G06K9/00 G06K9/62 H04N5/225

    摘要: The present invention is directed to a method for populating a database with a set of images of an anatomical structure. The database is used to perform appearance matching in image pairs of the anatomical structure. A set of image pairs of anatomical structures is received, where each image pair is annotated with a plurality of location-sensitive regions that identify a particular aspect of the anatomical structure. Weak learners are iteratively selected and an image patch is identified. A boosting process is used to identify a strong classifier based on responses to the weak learners applied to the identified image patch for each image pair. The responses comprise a feature response and a location response associated with the image patch. Positive and negative image pairs are generated. The positive and negative image pairs are used to learn a similarity function. The learned similarity function and iteratively selected weak learners are stored in the database.

    摘要翻译: 本发明涉及一种用解剖结构的一组图像填充数据库的方法。 该数据库用于在解剖结构的图像对中执行外观匹配。 接收一组解剖结构的图像对,其中每个图像对用多个识别解剖结构的特定方面的位置敏感区域注释。 迭代选择弱学习者,并识别图像补丁。 基于对应用于每个图像对的所识别的图像补丁的弱学习者的响应,使用增强过程来识别强分类器。 响应包括与图像块相关联的特征响应和位置响应。 产生正负图像对。 正负图像对用于学习相似度函数。 学习的相似度函数和迭代选择的弱学习者存储在数据库中。

    Method and System for Multi-Component Heart and Aorta Modeling for Decision Support in Cardiac Disease
    29.
    发明申请
    Method and System for Multi-Component Heart and Aorta Modeling for Decision Support in Cardiac Disease 失效
    多组分心脏和主动脉建模心脏疾病决策支持的方法与系统

    公开(公告)号:US20100280352A1

    公开(公告)日:2010-11-04

    申请号:US12770850

    申请日:2010-04-30

    摘要: A method and system for generating a patient specific anatomical heart model is disclosed. Volumetric image data, such as computed tomography (CT), echocardiography, or magnetic resonance (MR) image data of a patient's cardiac region is received. Individual models for multiple heart components, such as the left ventricle (LV) endocardium, LV epicardium, right ventricle (RV), left atrium (LA), right atrium (RA), mitral valve, aortic valve, aorta, and pulmonary trunk, are estimated in said volumetric cardiac image data. A multi-component patient specific anatomical heart model is generated by integrating the individual models for each of the heart components. Fluid Structure Interaction (FSI) simulations are performed on the patient specific anatomical model, and patient specific clinical parameters are extracted based on the patient specific heart model and the FSI simulations. Disease progression modeling and risk stratification are performed based on the patient specific clinical parameters.

    摘要翻译: 公开了一种用于产生患者特异性解剖心脏模型的方法和系统。 接收患者心脏区域的体积图像数据,例如计算机断层摄影(CT),超声心动图或磁共振(MR)图像数据。 用于多个心脏组件的单独模型,例如左心室(LV)心内膜,LV心外膜,右心室(RV),左心房(LA),右心房(RA),二尖瓣,主动脉瓣,主动脉和肺动脉干, 在所述体积心脏图像数据中估计。 通过对每个心脏组件的各个模型进行整合,产生多组分患者特异性解剖心脏模型。 对患者特异性解剖模型进行流体结构相互作用(FSI)模拟,并根据患者特异性心脏模型和FSI模拟提取患者特异性临床参数。 疾病进展模型和风险分层是根据患者的具体临床参数进行的。