System and method for using a similarity function to perform appearance matching in image pairs
    1.
    发明授权
    System and method for using a similarity function to perform appearance matching in image pairs 有权
    使用相似度函数执行图像对中的外观匹配的系统和方法

    公开(公告)号:US07831074B2

    公开(公告)日:2010-11-09

    申请号:US11539989

    申请日:2006-10-10

    IPC分类号: G06K9/00 G06K9/62 H04N5/225

    摘要: The present invention is directed to a method for populating a database with a set of images of an anatomical structure. The database is used to perform appearance matching in image pairs of the anatomical structure. A set of image pairs of anatomical structures is received, where each image pair is annotated with a plurality of location-sensitive regions that identify a particular aspect of the anatomical structure. Weak learners are iteratively selected and an image patch is identified. A boosting process is used to identify a strong classifier based on responses to the weak learners applied to the identified image patch for each image pair. The responses comprise a feature response and a location response associated with the image patch. Positive and negative image pairs are generated. The positive and negative image pairs are used to learn a similarity function. The learned similarity function and iteratively selected weak learners are stored in the database.

    摘要翻译: 本发明涉及一种用解剖结构的一组图像填充数据库的方法。 该数据库用于在解剖结构的图像对中执行外观匹配。 接收一组解剖结构的图像对,其中每个图像对用多个识别解剖结构的特定方面的位置敏感区域注释。 迭代选择弱学习者,并识别图像补丁。 基于对应用于每个图像对的所识别的图像补丁的弱学习者的响应,使用增强过程来识别强分类器。 响应包括与图像块相关联的特征响应和位置响应。 产生正负图像对。 正负图像对用于学习相似度函数。 学习的相似度函数和迭代选择的弱学习者存储在数据库中。

    Method for characterizing shape, appearance and motion of an object that is being tracked
    2.
    发明授权
    Method for characterizing shape, appearance and motion of an object that is being tracked 有权
    描述被跟踪物体的形状,外观和运动的方法

    公开(公告)号:US07620205B2

    公开(公告)日:2009-11-17

    申请号:US11466477

    申请日:2006-08-23

    IPC分类号: G06K9/00 A61B6/00

    摘要: A method for generating Pairwise Active Appearance Models (PAAMs) that characterize shape, appearance and motion of an object and using the PAAM to track the motion of an object is disclosed. A plurality of video streams is received. Each video stream includes a series of image frames that depict an object in motion. Each video stream includes an index of identified motion phases that are associated with a motion cycle of the object. For each video stream, a shape of the object is represented by a shape vector. An appearance of an object is represented by an appearance vector. The shape and appearance vectors associated at two consecutive motion phases are concatenated. Paired data for the concatenated shape and appearance vectors is computed. Paired data is computed for each two consecutive motion phases in the motion cycle. A shape subspace is constructed based on the computed paired data. An appearance subspace is constructed based on the computed paired data. A joint subspace is constructed using a combination of the shape subspace and appearance subspace. A PAAM is generated using the joint subspace and the PAAM is stored in a database.

    摘要翻译: 公开了一种用于产生表征对象的形状,外观和运动以及使用PAAM跟踪对象的运动的成对活动外观模型(PAAM)的方法。 接收多个视频流。 每个视频流包括描绘运动对象的一系列图像帧。 每个视频流包括与对象的运动周期相关联的所识别的运动相位的索引。 对于每个视频流,对象的形状由形状向量表示。 物体的外观由外观矢量表示。 在两个连续的运动阶段相关联的形状和外观矢量被连接起来。 计算连续形状和外观向量的配对数据。 计算运动周期中每两个连续运动相位的配对数据。 基于计算的配对数据构建形状子空间。 基于计算出的配对数据构建出现子空间。 使用形状子空间和外观子空间的组合构建关节子空间。 使用联合子空间生成PAAM,并将PAAM存储在数据库中。

    Method and system for regression-based object detection in medical images
    4.
    发明授权
    Method and system for regression-based object detection in medical images 有权
    医学图像中基于回归的物体检测方法与系统

    公开(公告)号:US07949173B2

    公开(公告)日:2011-05-24

    申请号:US11866572

    申请日:2007-10-03

    IPC分类号: G06K9/00 A61B6/00

    摘要: A method and system for regression-based object detection in medical images is disclosed. A regression function for predicting a location of an object in a medical image based on an image patch is trained using image-based boosting ridge regression (IBRR). The trained regression function is used to determine a difference vector based on an image patch of a medical image. The difference vector represents the difference between the location of the image patch and the location of a target object. The location of the target object in the medical image is predicted based on the difference vector determined by the regression function.

    摘要翻译: 公开了一种用于医学图像中基于回归的物体检测的方法和系统。 使用基于图像的增强脊回归(IBRR)训练用于基于图像块预测医学图像中的对象的位置的回归函数。 训练回归函数用于基于医学图像的图像块来确定差分矢量。 差分向量表示图像块的位置与目标对象的位置之间的差异。 基于由回归函数确定的差分向量来预测目标对象在医学图像中的位置。

    System and method for learning relative distance in a shape space using image based features
    9.
    发明授权
    System and method for learning relative distance in a shape space using image based features 有权
    使用基于图像的特征来学习形状空间中的相对距离的系统和方法

    公开(公告)号:US07603000B2

    公开(公告)日:2009-10-13

    申请号:US11464851

    申请日:2006-08-16

    IPC分类号: G06K9/60

    摘要: A system and method for identifying a shape of an anatomical structure in an input image is disclosed. An input image is received and warped using a set of warping templates resulting in a set of warped images. An integral image is calculated for each warped image. Selected features are extracted based on the integral image. A boosted feature score is calculated for the combined selected features for each warped image. The warped images are ranked based on the boosted feature scores. A predetermined number of warped images are selected that have the largest feature scores. Each selected warped image is associated with its corresponding warping template. The corresponding warping templates are associated with stored shape models. The shape of the input image is identified based on the weighted average of the shapes models.

    摘要翻译: 公开了一种用于识别输入图像中的解剖结构的形状的系统和方法。 使用一组翘曲模板接收和扭曲输入图像,产生一组翘曲图像。 为每个弯曲图像计算整体图像。 基于积分图像提取所选特征。 对于每个弯曲图像的组合选定特征,计算提升的特征分数。 翘曲的图像根据提升的特征得分进行排名。 选择具有最大特征分数的预定数量的翘曲图像。 每个选择的变形图像与其相应的翘曲模板相关联。 相应的变形模板与存储的形状模型相关联。 基于形状模型的加权平均值来识别输入图像的形状。