Abstract:
A liquid crystal display apparatus has a liquid crystal display device, a surface light source, and a view angle limiting device arranged between the surface light source and the liquid crystal display device. The view angle limiting device includes first and second transparent plates facing each other with a gap therebetween, a plurality of first ½ retardation layers having a predetermined shape formed to be spaced apart from each other on one of the facing inner surfaces of the first and second transparent plates, a plurality of second ½ retardation layers formed on the other inner surface at regions corresponding to the regions between the first ½ retardation layers, and a polarizing film provided at the outer surface of one of the first and second transparent plates that faces the surface light source.
Abstract:
A surface light source includes a prism sheet placed on one side of a liquid crystal display panel, and having elongated prism portions formed to form a patterned indented entrance surface having an angular cross-section, and an exit surface. A reflecting plate is placed to face the prism sheet through a space. First and second light source units are disposed on two end sides. A control unit sequentially writes left-eye image data and right-eye image data on respective pixels of the display panel, causes the light source unit on the right side when viewed from an observation side of the surface light source to emit light in synchronism with the writing of the left-eye image data, and causes the light source unit on the left side to emit light in synchronism with the writing of the right-eye image data.
Abstract:
Disclosed is a pressure sensor comprising: a substrate; a pressure reception plate which is provided in a state of facing the substrate, the pressure reception plate comprising in a surface which faces the substrate, a low reflection region, and a high reflection region having a relatively higher reflection ratio compared to the low reflection region; a support portion to change a distance between the substrate and the pressure reception plate when a pressure is applied to the pressure reception plate, the support portion being provided in between the substrate and the pressure reception plate; and a plurality of light receiving elements which are respectively provided on the substrate in positions facing the low reflection region and in positions facing the high reflection region, of the pressure reception plate.
Abstract:
A liquid crystal display apparatus has a liquid crystal display device, a surface light source, and a view angle limiting device arranged between the surface light source and the liquid crystal display device. The view angle limiting device includes first and second transparent plates facing each other with a gap therebetween, a plurality of first ½ retardation layers having a predetermined shape formed to be spaced apart from each other on one of the facing inner surfaces of the first and second transparent plates, a plurality of second ½ retardation layers formed on the other inner surface at regions corresponding to the regions between the first ½ retardation layers, and a polarizing film provided at the outer surface of one of the first and second transparent plates that faces the surface light source.
Abstract:
A surface light source includes first and second light sources that emit lights, and an optical deflection element. The optical deflection element changes light emitted from the first light source into first illumination light having a maximum value of an exit light intensity present in a direction parallel to a normal line of the surface light source, a spread angle range, and high directivity in a direction of the normal line and allows the changed light to exit therefrom. The optical deflection element also changes light emitted from the second light source into second illumination light having a maximum value of an exit light intensity in an oblique direction inclined at an angle with respect to the normal line and a spread angle range wider than that of the first illumination light and allows the changed light to exit therefrom.
Abstract:
A display apparatus includes a liquid crystal display panel and an illuminator disposed at the back of the panel for emitting at least two illumination lights having directivities in different directions toward the panel. The illuminator includes a light guide plate made of transparent material whose one end surface serves as a light entrance end surface, whose one plate surface serves as a light exit surface, and whose other plate surface serves as a light direction changing surface for changing the advancing direction of light entering from the light entrance end surface. The light direction changing surface has a plurality of circular-arcing slanted surfaces shaped into semicircles formed on concentric circles centered at the center of the longer dimension of the light entrance end surface. Light emitting elements are disposed on the light entrance end surface at two positions on left and right sides of the center equidistantly apart therefrom.
Abstract:
The invention has light source unit disposed at opposite side to observer side of liquid crystal display device for selectively emitting linearly-polarized light and non-polarized light, and retardation element disposed between liquid crystal display device and light source unit. Plurality of first and second layers whose slow axes are arranged in different directions are alternately arranged on a surface of retardation element that faces light source unit, and plurality of third and fourth layers whose slow axes are arranged in different directions are arranged on the other surface, such that third layers face first layers and fourth layers face second layers. First to fourth layers are arranged such that polarization plane of light passing through first and third layers and second and fourth layers is rotated by 90°, and polarization plane of light passing through first and fourth layers and second and third layers is rotated by 180° or 0°.
Abstract:
A surface light source includes first and second light sources that emit lights, and an optical deflection element. The optical deflection element changes light emitted from the first light source into first illumination light having a maximum value of an exit light intensity present in a direction parallel to a normal line of the surface light source, a spread angle range, and high directivity in a direction of the normal line and allows the changed light to exit therefrom. The optical deflection element also changes light emitted from the second light source into second illumination light having a maximum value of an exit light intensity in an oblique direction inclined at an angle with respect to the normal line and a spread angle range wider than that of the first illumination light and allows the changed light to exit therefrom.
Abstract:
A surface light source includes a light guide unit which allows two linear polarized lights having polarized planes perpendicular to each other to alternately exit from an exit surface in a direction substantially parallel with a normal line of the exit surface. A retardation element is arranged to face the exit surface. The retardation element has λ/2 retardation portions which give a phase difference of a ½ wavelength between ordinary light and abnormal light, and a plurality of non-retardation portions having substantially no phase difference alternately formed in a direction along the exit surface. A lens array is provided to face the light guide unit. The lens array allows light which has been transmitted through a λ/2 retardation portion to exit in a first inclined exiting direction, and allows light which has been transmitted through a non-retardation portion to exit in a second inclined exiting direction.
Abstract:
A display apparatus includes a liquid crystal display panel and an illuminator disposed at the back of the panel for emitting at least two illumination lights having directivities in different directions toward the panel. The illuminator includes a light guide plate made of transparent material whose one end surface serves as a light entrance end surface, whose one plate surface serves as a light exit surface, and whose other plate surface serves as a light direction changing surface for changing the advancing direction of light entering from the light entrance end surface. The light direction changing surface has a plurality of circular-arcing slanted surfaces shaped into semicircles formed on concentric circles centered at the center of the longer dimension of the light entrance end surface. Light emitting elements are disposed on the light entrance end surface at two positions on left and right sides of the center equidistantly apart therefrom.