Abstract:
A liquid crystal display apparatus comprises first and second light emitting sections for emitting light with respective spreading angles that are different from each other and a liquid crystal display device arranged at the viewing side of the apparatus. The first light emitting section includes a first light guide plate for receiving light from a light incident end surface and diffusing it within a first angular range of spreading angle centered at the normal direction of a light emitting surface before emitting it from the light emitting surface and first light emitting elements. The second light emitting section includes a second light guide plate for receiving light from a light incident end surface and emitting it in directions within a second angular range of spreading angle smaller than the first angular range while transmitting light emitted from the first light guide plate and second light emitting elements.
Abstract:
A scanning head includes a surface emitting part array panel which has an array of surface emitting parts to emit light A plurality of light guide parts are respectively opposite to the surface emitting parts. Each of light guide parts has an entrance plane to receive the light from the surface emitting part, a reflection plane to reflect the light from the entrance plane, and an exit plane to emit the light from the reflection plane.
Abstract:
A surface light source includes a light source which selectively irradiates two polarized light beams in polarized states different from each other, a light guide plate which includes a transparent plate having two plate surfaces facing each other and end faces surrounding the plate surfaces, and irradiates the two polarized light beams form an irradiation surface, and an optical element which irradiates irradiated light from the irradiation surface of the light guide plate toward a direction substantially normal to the light guide plate upon changing the propagation direction of the irradiated light. A liquid crystal display apparatus includes this surface light source, a polarization control element which is placed on the observation side of the surface light source and rotates the polarization plane of linearly polarized light transmitted through one of partitioned first and second areas through a predetermined angle, and a liquid crystal display device placed on the observation side.
Abstract:
A surface light source includes a light guide unit which allows two linear polarized lights having polarized planes perpendicular to each other to alternately exit from an exit surface in a direction substantially parallel with a normal line of the exit surface. A retardation element is arranged to face the exit surface. The retardation element has λ/2 retardation portions which give a phase difference of a ½ wavelength between ordinary light and abnormal light, and a plurality of non-retardation portions having substantially no phase difference alternately formed in a direction along the exit surface. A lens array is provided to face the light guide unit. The lens array allows light which has been transmitted through a λ/2 retardation portion to exit in a first inclined exiting direction, and allows light which has been transmitted through a non-retardation portion to exit in a second inclined exiting direction.
Abstract:
A three-dimensional display device includes a display unit that displays a left eye image and a right eye image by dividing the images thereof into a plurality of vertically elongated stripes of images and by alternately arranging the divided left eye image and the divided right eye image in a horizontal direction, a barrier formation unit that forms a parallax barrier in front of the display unit, the parallax barrier including a pattern of a plurality of slits to selectively transmit the left eye image and the right eye image towards spatially different points, respectively, that correspond to a left eye and a right eye of the viewer, and a distance measurement unit that measures a distance between the display unit and a viewer viewing the display unit, wherein the barrier formation unit changes the pattern of the slits in the parallax barrier in accordance with the distance measured by the distance measurement unit.
Abstract:
A scanning head includes a surface emitting part array panel which has an array of surface emitting parts to emit light A plurality of light guide parts are respectively opposite to the surface emitting parts. Each of light guide parts has an entrance plane to receive the light from the surface emitting part, a reflection plane to reflect the light from the entrance plane, and an exit plane to emit the light from the reflection plane.
Abstract:
A surface light source includes a light source which selectively irradiates two polarized light beams in polarized states different from each other, a light guide plate which includes a transparent plate having two plate surfaces facing each other and end faces surrounding the plate surfaces, and irradiates the two polarized light beams form an irradiation surface, and an optical element which irradiates irradiated light from the irradiation surface of the light guide plate toward a direction substantially normal to the light guide plate upon changing the propagation direction of the irradiated light. A liquid crystal display apparatus includes this surface light source, a polarization control element which is placed on the observation side of the surface light source and rotates the polarization plane of linearly polarized light transmitted through one of partitioned first and second areas through a predetermined angle, and a liquid crystal display device placed on the observation side.
Abstract:
A display device includes a screen having opposite ends and a curved surface between the opposite ends, the curved surface being protrudingly curved toward a side opposite to a display observation side. First and second display elements are respectively provided at the opposite ends of the screen, and display two different sub-images constituting one image. The display elements are arranged in such a manner that sub-image lights of these sub-images are transmitted toward an inner side from corresponding areas on an outer side of the curved surface in end sections of the screen to be applied to the inner side of the curved surface of the screen and sub-image lights are reflected on the inner surface of the curved surface of the screen to enter right and left eyes of an observer, respectively.
Abstract:
A surface light source includes first and second light sources that emit lights, and an optical deflection element. The optical deflection element changes light emitted from the first light source into first illumination light having a maximum value of an exit light intensity present in a direction parallel to a normal line of the surface light source, a spread angle range, and high directivity in a direction of the normal line and allows the changed light to exit therefrom. The optical deflection element also changes light emitted from the second light source into second illumination light having a maximum value of an exit light intensity in an oblique direction inclined at an angle with respect to the normal line and a spread angle range wider than that of the first illumination light and allows the changed light to exit therefrom.
Abstract:
A display apparatus includes a display panel that displays an image, and a viewing angle restricting element that selectively irradiates light with directivity in a restricting direction at a predetermined angle with respect to a direction of normal to the display panel, toward an observation side of the display panel.