EVENT DETECTION SYSTEM USING ELECTRONIC TRACKING DEVICES AND VIDEO DEVICES
    21.
    发明申请
    EVENT DETECTION SYSTEM USING ELECTRONIC TRACKING DEVICES AND VIDEO DEVICES 有权
    使用电子跟踪装置和视频装置的事件检测系统

    公开(公告)号:US20100308993A1

    公开(公告)日:2010-12-09

    申请号:US12850294

    申请日:2010-08-04

    IPC分类号: G08B1/08 G08B13/14

    CPC分类号: G07C9/00111

    摘要: An event detection system includes a processor, an electronic tracking device, and one or more transmitters. Each of the one or more transmitters can be configured to be associated with a particular individual of a group of individuals. The processor can be configured to cluster data from the one or more transmitters, and the processor can be configured to analyze the clustered data to determine a group behavior pattern among the group of individuals. In an embodiment, video data can be combined with the electronic tracking device data in the event detection system.

    摘要翻译: 事件检测系统包括处理器,电子跟踪装置和一个或多个发射器。 一个或多个发射器中的每一个可以被配置为与一组个体的特定个体相关联。 处理器可以被配置为对来自一个或多个发射机的数据进行聚类,并且处理器可以被配置为分析群集数据以确定群体中的群体行为模式。 在一个实施例中,视频数据可以与事件检测系统中的电子跟踪设备数据组合。

    Method and apparatus for identifying physical features in video
    22.
    发明授权
    Method and apparatus for identifying physical features in video 有权
    用于识别视频中的物理特征的方法和装置

    公开(公告)号:US07567704B2

    公开(公告)日:2009-07-28

    申请号:US11289886

    申请日:2005-11-30

    CPC分类号: G06K9/00771 G06K9/46

    摘要: An image is processed by a sensed-feature-based classifier to generate a list of objects assigned to classes. The most prominent objects (those objects whose classification is most likely reliable) are selected for range estimation and interpolation. Based on the range estimation and interpolation, the sensed features are converted to physical features for each object. Next, that subset of objects is then run through a physical-feature-based classifier that re-classifies the objects. Next, the objects and their range estimates are re-run through the processes of range estimation and interpolation, sensed-feature-to-physical-feature conversion, and physical-feature-based classification iteratively to continuously increase the reliability of the classification as well as the range estimation. The iterations are halted when the reliability reaches a predetermined confidence threshold. In a preferred embodiment, a next subset of objects having the next highest prominence in the same image is selected and the entire iterative process is repeated. This set of iterations will include evaluation of both of the first and second subsets of objects. The process can be repeated until all objects have been classified.

    摘要翻译: 图像由基于感测特征的分类器处理以生成分配给类的对象的列表。 选择最突出的对象(那些分类最可靠的对象)用于范围估计和插值。 基于范围估计和内插,感测到的特征被转换为每个对象的物理特征。 接下来,该对象的子集然后通过基于物理特征的分类器来运行,该分类器重新分类对象。 接下来,通过范围估计和插值,感测特征到物理特征转换和基于物理特征的分类的过程重新运行对象及其范围估计,以不断提高分类的可靠性 作为范围估计。 当可靠性达到预定的置信阈值时,迭代停止。 在优选实施例中,选择具有相同图像中的下一个最高突出的对象的下一个子集,并重复整个迭代过程。 这组迭代将包括评估对象的第一和第二子集。 可以重复该过程,直到所有对象都被分类为止。

    Method and System for Indexing and Searching Objects of Interest across a Plurality of Video Streams
    23.
    发明申请
    Method and System for Indexing and Searching Objects of Interest across a Plurality of Video Streams 有权
    用于索引和搜索多个视频流中的兴趣对象的方法和系统

    公开(公告)号:US20080204569A1

    公开(公告)日:2008-08-28

    申请号:US11845439

    申请日:2007-08-27

    IPC分类号: H04N5/228

    摘要: A seed search of a subset of analytical data corresponding to video objects displayable in a plurality of video frames is carried out to identify video objects that most closely match a selected video object and then complete searches of the analytical data may be carried out so as to identify video objects that most closely match each video object identified during the seed search. The video objects having the greatest number of occurrences of being identified during the complete searches may be displayed by a graphical user interface (GUI). In this way, the GUI may display the video objects in an order based on how closely each video object matches the selected video object and/or a video object identified during the seed search, which may an order different than an order based on a time when each video object was captured.

    摘要翻译: 执行对应于可在多个视频帧中显示的视频对象的分析数据的子集的种子搜索,以识别与所选择的视频对象最匹配的视频对象,然后可以完成对分析数据的完整搜索,以便 识别与种子搜索期间识别的每个视频对象最匹配的视频对象。 可以通过图形用户界面(GUI)显示在整个搜索期间被识别出最多出现次数的视频对象。 以这种方式,GUI可以基于每个视频对象与选择的视频对象和/或种子搜索期间识别的视频对象的密切程度相关联地显示视频对象,其可以与基于时间的顺序不同的顺序 当每个视频对象被捕获。

    Automated activity detection using supervised learning
    24.
    发明申请
    Automated activity detection using supervised learning 有权
    使用监督学习的自动活动检测

    公开(公告)号:US20070177792A1

    公开(公告)日:2007-08-02

    申请号:US11343658

    申请日:2006-01-31

    IPC分类号: G06K9/62

    CPC分类号: G06K9/00348

    摘要: In an embodiment, one or more sequences of learning video data is provided. The learning video sequences include an action. One or more features of the action are extracted from the one or more sequences of learning video data. Thereafter, a reception of a sequence of operational video data is enabled, and an extraction of the one or more features of the action from the sequence of operational video data is enabled. A comparison is then enabled between the extracted one or more features of the action from the one or more sequences of learning video data and the one or more features of the action from the sequence of operational video data. In an embodiment, this comparison allows the determination of whether the action in present in the operational video data.

    摘要翻译: 在一个实施例中,提供学习视频数据的一个或多个序列。 学习视频序列包括动作。 从学习视频数据的一个或多个序列中提取动作的一个或多个特征。 此后,启用操作视频数据序列的接收,并且能够从操作视频数据序列中提取动作的一个或多个特征。 然后,从所述学习视频数据的一个或多个序列以及来自所述操作视频数据序列的所述动作的所述一个或多个特征,提取所述动作的一个或多个特征之间的比较。 在一个实施例中,该比较允许确定当前在操作视频数据中的动作。

    Method and apparatus for identifying physical features in video
    25.
    发明申请
    Method and apparatus for identifying physical features in video 有权
    用于识别视频中的物理特征的方法和装置

    公开(公告)号:US20070122040A1

    公开(公告)日:2007-05-31

    申请号:US11289886

    申请日:2005-11-30

    IPC分类号: G06K9/62 G06K9/46

    CPC分类号: G06K9/00771 G06K9/46

    摘要: An image is processed by a sensed-feature-based classifier to generate a list of objects assigned to classes. The most prominent objects (those objects whose classification is most likely reliable) are selected for range estimation and interpolation. Based on the range estimation and interpolation, the sensed features are converted to physical features for each object. Next, that subset of objects is then run through a physical-feature-based classifier that re-classifies the objects. Next, the objects and their range estimates are re-run through the processes of range estimation and interpolation, sensed-feature-to-physical-feature conversion, and physical-feature-based classification iteratively to continuously increase the reliability of the classification as well as the range estimation. The iterations are halted when the reliability reaches a predetermined confidence threshold. In a preferred embodiment, a next subset of objects having the next highest prominence in the same image is selected and the entire iterative process is repeated. This set of iterations will include evaluation of both of the first and second subsets of objects. The process can be repeated until all objects have been classified.

    摘要翻译: 图像由基于感测特征的分类器处理以生成分配给类的对象的列表。 选择最突出的对象(那些分类最可靠的对象)用于范围估计和插值。 基于范围估计和内插,感测到的特征被转换为每个对象的物理特征。 接下来,该对象的子集然后通过基于物理特征的分类器来运行,该分类器重新分类对象。 接下来,通过范围估计和插值,感测特征到物理特征转换和基于物理特征的分类的过程重新运行对象及其范围估计,以不断提高分类的可靠性 作为范围估计。 当可靠性达到预定的置信阈值时,迭代停止。 在优选实施例中,选择具有相同图像中的下一个最高突出的对象的下一个子集,并重复整个迭代过程。 这组迭代将包括评估对象的第一和第二子集。 可以重复该过程,直到所有对象都被分类为止。

    MULTIPLE MODEL ESTIMATION IN MOBILE AD-HOC NETWORKS
    26.
    发明申请
    MULTIPLE MODEL ESTIMATION IN MOBILE AD-HOC NETWORKS 审中-公开
    移动AD-HOC网络中的多模型估计

    公开(公告)号:US20070097873A1

    公开(公告)日:2007-05-03

    申请号:US11163806

    申请日:2005-10-31

    IPC分类号: H04J1/16

    摘要: The present invention, in illustrative embodiments, includes methods and devices for operation of a MANET system. In an illustrative embodiment, a method includes steps of analyzing and predicting performance of a MANET node by the use of a multiple model estimation technique. Another illustrative embodiment optimizes operation of a MANET node by the use of a model developed using a multiple model estimation technique. An illustrative device makes use of a multiple model estimation technique to estimate its own performance. In a further embodiment, the illustrative device may optimize its own performance by the use of a model developed using a multiple model estimation technique.

    摘要翻译: 本发明在说明性实施例中包括用于MANET系统的操作的方法和装置。 在说明性实施例中,一种方法包括通过使用多模型估计技术来分析和预测MANET节点的性能的步骤。 另一个说明性实施例通过使用使用多模型估计技术开发的模型来优化MANET节点的操作。 说明性设备利用多模型估计技术来估计其自身的性能。 在另一实施例中,说明性设备可以通过使用使用多模型估计技术开发的模型来优化其自身的性能。

    Object tracking system
    27.
    发明申请
    Object tracking system 有权
    对象跟踪系统

    公开(公告)号:US20060285723A1

    公开(公告)日:2006-12-21

    申请号:US11154839

    申请日:2005-06-16

    IPC分类号: G06K9/00 H04N7/18

    摘要: A system for tracking objects across an area having a network of cameras with overlapping and non-overlapping fields of view. The system may use a combination of color, shape, texture and/or multi-resolution histograms for object representation or target modeling for the tacking of an object from one camera to another. The system may include user and output interfacing.

    摘要翻译: 一种用于在具有重叠和非重叠视场的摄像机网络的区域上跟踪对象的系统。 系统可以使用颜色,形状,纹理和/或多分辨率直方图的组合来进行对象表示或目标建模,用于将对象从一个摄像机固定到另一个摄像机。 该系统可以包括用户和输出接口。

    SYSTEMS AND METHODS FOR TRANSFORMING 2D IMAGE DOMAIN DATA INTO A 3D DENSE RANGE MAP
    28.
    发明申请
    SYSTEMS AND METHODS FOR TRANSFORMING 2D IMAGE DOMAIN DATA INTO A 3D DENSE RANGE MAP 审中-公开
    将2D图像域数据转换为3D DENSE RANGE MAP的系统和方法

    公开(公告)号:US20060233461A1

    公开(公告)日:2006-10-19

    申请号:US10907877

    申请日:2005-04-19

    IPC分类号: G06K9/36

    摘要: Systems and methods for transforming two-dimensional image data into a 3D dense range map are disclosed. An illustrative method may include the steps of acquiring at least one image frame from an image sensor, selecting at least one region of interest within the image frame, determining the geo-location of three or more reference points within each selected region of interest, and transforming 2D image domain data from each selected region of interest into a 3D dense range map containing physical features of one or more objects within the image frame. The 3D dense range map can be used to calculate physical feature vectors of objects disposed within each defined region of interest. An illustrative video surveillance system may include an image sensor adapted to acquire images from at least one region of interest, a graphical user interface for displaying images acquired from the image sensor within an image frame, and a processor for determining the geo-location of one ore more objects within the image frame. The processor can be configured to run an algorithm or routine adapted to transform two-dimensional data received from the image sensor into a 3D range map containing physical features of one or more objects within the image frame.

    摘要翻译: 公开了将二维图像数据转换为3D密集范围图的系统和方法。 说明性方法可以包括以下步骤:从图像传感器获取至少一个图像帧,在图像帧内选择至少一个感兴趣区域,确定每个所选择的感兴趣区域内的三个或更多个参考点的地理位置,以及 将来自每个所选择的感兴趣区域的2D图像域数据转换成包含所述图像帧内的一个或多个对象的物理特征的3D密集范围图。 3D密集范围图可用于计算设置在每个定义的感兴趣区域内的物体的物理特征向量。 说明性视频监视系统可以包括适于从至少一个感兴趣区域获取图像的图像传感器,用于显示从图像帧内的图像传感器获取的图像的图形用户界面,以及用于确定一个图像的地理位置的处理器 在图像框架内更多的物体。 处理器可以被配置为运行适于将从图像传感器接收的二维数据转换成包含图像帧内的一个或多个对象的物理特征的3D范围图的算法或程序。

    Cross spectral feature correlation for navigational adjustment
    29.
    发明授权
    Cross spectral feature correlation for navigational adjustment 有权
    导航调整的交叉光谱特征相关

    公开(公告)号:US09547904B2

    公开(公告)日:2017-01-17

    申请号:US14725964

    申请日:2015-05-29

    申请人: Yunqian Ma

    发明人: Yunqian Ma

    摘要: A system includes a sensor to generate a first image having a first two-dimensional image pixel data set. A database provides a second image having a second two-dimensional image pixel data set that includes a three-dimensional positional data set describing a navigational position of each pixel in the second two-dimensional image pixel data set. A vision module includes an edge extractor to extract image edge features from the first two-dimensional pixel data set and image edge features from the second two-dimensional image pixel data set. The vision module includes a feature correlator to determine a navigational position for each pixel in the first two-dimensional data set based on an image edge feature comparison of the extracted edge features from the first and second two-dimensional image pixel data sets.

    摘要翻译: 系统包括用于生成具有第一二维图像像素数据集的第一图像的传感器。 数据库提供具有第二二维图像像素数据集的第二图像,该第二二维图像像素数据集包括描述第二二维图像像素数据集中的每个像素的导航位置的三维位置数据集。 视觉模块包括边缘提取器,用于从第二二维像素数据集中提取图像边缘特征并从第二二维图像像素数据集中提取图像边缘特征。 视觉模块包括特征相关器,用于基于来自第一和第二二维图像像素数据集的提取的边缘特征的图像边缘特征比较来确定第一二维数据集中的每个像素的导航位置。

    SYSTEMS AND METHODS FOR CORRELATING REDUCED EVIDENCE GRIDS
    30.
    发明申请
    SYSTEMS AND METHODS FOR CORRELATING REDUCED EVIDENCE GRIDS 有权
    用于减少证据网格的系统和方法

    公开(公告)号:US20140025331A1

    公开(公告)日:2014-01-23

    申请号:US13552174

    申请日:2012-07-18

    IPC分类号: G06F17/18 G01P15/02

    摘要: A system is provided for correlating evidence grids. In certain embodiments, the system includes a sensor that generates signals describing a current section of an environment; a memory configured to store measurements of historical sections of the environment; and a processor coupled to the sensor and configured to calculate navigation parameters based on signals received from the sensor. Further, the processor converts the signals received from the sensor into a current evidence grid and removes data from the current evidence grid to form a reduced evidence grid; converts the measurements of historical sections into a historical evidence grid; and correlates the reduced evidence grid with the historical evidence grid by adjusting position and orientation of the reduced evidence grid and the historical evidence grid in relation to one another and calculating correlative values, and searching for a highest correlative value.

    摘要翻译: 提供了一种用于关联证据网格的系统。 在某些实施例中,系统包括产生描述环境的当前部分的信号的传感器; 被配置为存储环境的历史部分的测量值的存储器; 以及耦合到所述传感器并被配置为基于从所述传感器接收的信号来计算导航参数的处理器。 此外,处理器将从传感器接收的信号转换成当前的证据网格,并从当前证据网格中移除数据以形成减少的证据网格; 将历史部分的测量转换为历史证据网格; 并通过调整相对较少的证据网格和历史证据网格的位置和方向,计算相关值,并搜索最高的相关值,将减少的证据格网与历史证据格网相关联。