摘要:
A transmitter which is capable of producing an SSB signal having a sharp spectrum cut. The transmitter generates the SSB signal using an FFT circuit (103) which Fourier-transforms a transmission symbol, a zero insertion circuit (104) which zeros the component of either the USB component signal or the LSB component signal outputted from the FFT circuit (103), an IFFT circuit (105) which inverse-Fourier-transforms the output from the zero insertion circuit (104), and a parallel-serial conversion circuit (106) which parallel-serial-converts the output from the IFFT circuit (105).
摘要:
The coding apparatus, coding processing target sequence forming method and Viterbi decoding apparatus of the present invention can realize low delay processing with a minimum number of repetitive processing and suppress the degradation of the accuracy of decoding at the ends of a decoded sequence due to truncation error. In the coding apparatus mounted on the transmitting apparatus (100), a control information rearranging section (130) receives as input a control information sequence, in which a plurality of control information blocks are arranged in a predetermined order, and forms a coding processing target sequence by rearranging the order of the plurality of control information blocks to form an assembled sequence grouping control information blocks comprised of predictable bit sequences in the plurality of control information blocks, and to allocate the assembled sequence to a predetermined position in the control information sequence. Further, an encoding section (140) encodes the coding target sequence using the tail-biting convolutional coding scheme.
摘要:
To narrow the dynamic range of multicarrier signals and prevent both the increment of cost and the degradation of power efficiency. A modulating part (101) modulates transport data. An S/P converting part (102) performs an S/P conversion of a modulated symbol and outputs the modulated symbols, the number of which is the same as the number of all subcarriers, to an IFFT part (103) in parallel. The IFFT part (103) assigns the modulated symbols to the subcarriers, the frequencies of which are orthogonal to each other, to perform an inverse fast Fourier transform. A P/S converting part (104) performs a P/S conversion of the signals of time domain. When the instantaneous amplitude level of an OFDM signal is lower than a predetermined threshold value, a pit clip part (105) replaces this amplitude level by the predetermined threshold value. In other words, when the instantaneous power of the OFDM signal is close to zero, the pit clip part (105) converts a power value to a value that is greater than the actual power value.
摘要翻译:缩小多载波信号的动态范围,防止成本增加和功率效率的退化。 调制部(101)调制传输数据。 S / P转换部分(102)执行调制符号的S / P转换,并且将其数量与所有子载波数相同的调制符号并行地输出到IFFT部分(103)。 IFFT部分(103)将调制符号分配给彼此正交的频率的子载波,以执行快速傅立叶逆变换。 P / S转换部(104)进行时域信号的P / S转换。 当OFDM信号的瞬时幅度电平低于预定阈值时,凹坑夹部分(105)将该幅度电平取代预定阈值。 换句话说,当OFDM信号的瞬时功率接近零时,凹坑夹部分(105)将功率值转换成大于实际功率值的值。