Abstract:
The present invention relates to a thermoacoustic device that includes an acoustic element. The acoustic element includes a substrate, a plurality of microspaces, and a metal film. The metal film is located above the substrate. A plurality of microspaces is defined between the substrate and the metal film. The metal film is partially suspended above the substrate.
Abstract:
A device for making a carbon nanotube film includes a substrate and a catalyst layer on the substrate. The catalyst layer has two substantially parallel sides. The present disclosure also provides a method for making a carbon nanotube film. The catalyst layer is annealed at a high temperature in air. The annealed catalyst layer is heated up to a predetermined reaction temperature in a furnace with a protective gas therein. A carbonaceous gas is supplied into the furnace to grow a carbon nanotube array having two substantially parallel side faces. A carbon nanotube film is drawn from the carbon nanotube array. A drawing direction is substantially parallel to the two substantially parallel side faces of the carbon nanotube array.
Abstract:
A method of online predicting maintenance of an apparatus is disclosed. Using an optical emission spectroscopy (OES) positioned on the apparatus and the change of emission spectrum intensity detected by the OES in the process, according to the detected results, measuring the parameter in the process, the function relation between the process parameter and spectrum intensity is acquired. A control threshold is decided by the processing requirement to the apparatus. When the parameter exceeds the control threshold, maintenance to the etching apparatus is engaged in order to avoid processing error caused by frequent shutdown or deficient maintenance which is estimated by experience, and hence decreasing the cost and increasing processing efficiency of substrates (such as silicon wafers) without changing apparatus and adding other online sensor, and improving production rate by avoiding waste substrates caused by error processing results. The method is suitable for semiconductor substrate etching maintenance of the apparatus and also other maintenance of the apparatus.
Abstract:
A sound wave generator includes one or more carbon nanotube film. The carbon nanotube film includes a plurality of carbon nanotubes joined end to end by van der Waals attractive force therebetween. At least part of the one or more carbon nanotube film is supported by a supporting element. The one or more carbon nanotube film produces sound by means of the thermoacoustic effect.
Abstract:
An apparatus, the apparatus includes an electromagnetic signal device; a medium; and a sound wave generator. The sound wave generator includes a carbon nanotube structure. The carbon nanotube structure includes one or more carbon nanotube films. Each carbon nanotube film includes a plurality of carbon nanotubes substantially parallel to each other and joined side by side via van der Waals attractive force. The electromagnetic signal device transmits an electromagnetic signal to the carbon nanotube structure. The carbon nanotube structure converts the electromagnetic signal into heat. The heat transfers to the medium causing a thermoacoustic effect.
Abstract:
A method for making a field emission cathode includes the steps of: (a) providing a substrate having a first substrate surface and a second substrate surface opposite to the first substrate surface; (b) forming a conductive film on the first substrate surface; (c) forming a catalyst film on the conductive film, the catalyst film including carbonaceous material; (d) flowing a mixture of a carrier gas and a carbon source gas over the catalyst film; (e) focusing a laser beam on the catalyst film and/or on the second substrate surface to locally heat the catalyst to a predetermined reaction temperature; and (f) growing an array of the carbon nanotubes via the catalyst film to form a field emission cathode.
Abstract:
A method for measuring properties of an electromagnetic signal includes following steps. An electromagnetic signal measuring device that includes a carbon nanotube structure is provided. The carbon nanotube structure has a plurality of carbon nanotubes. An electromagnetic signal is received by the carbon nanotube structure in the electromagnetic signal measuring device. The intensity of the electromagnetic signal is measured by a sound produced by the carbon nanotube structure.
Abstract:
An apparatus includes a signal device, a power amplifier, and a sound wave generator. The power amplifier is electrically connected to the signal device. The power amplifier outputs an amplified electrical signal to the sound wave generator. The sound wave generator produces sound waves by a thermoacoustic effect. The amplified electrical signal is positive or negative.
Abstract:
A method for making an array of carbon nanotubes includes the steps of: (a) providing a substrate having a first surface and a second surface opposite to the first surface; (b) forming a catalyst film on the first surface of the substrate; (c) flowing a mixture of a carrier gas and a carbon source gas over the catalyst film; (d) generating a laser beam using a galvanometric scanning system, directing the laser beam toward/on one of the first surface and the second surface to locally heat the catalyst film to a predetermined temperature; and (e) growing an array of the carbon nanotubes from the substrate.
Abstract:
A method for making/growing an array of carbon nanotubes includes the steps of: (a) providing a substrate; (b) forming a light absorption film made of a light absorption material on the substrate; (c) forming a catalyst film on the light absorption film; (d) introducing a mixture of a carrier gas and a carbon source gas by flowing the mixture over/across the catalyst film; (e) focusing a laser beam on the light absorption film to locally heat the catalyst to a predetermined/reaction temperature; and (f) growing an array of the carbon nanotubes from the substrate.