Abstract:
A cloud water resource detecting system and method, the system includes computing device, and Raman lidar, microwave radiometer, millimeter wave cloud radar, wind profile radar and Doppler wind lidar in communication connection with the computing device. The Raman lidar and the microwave radiometer are configured to obtain temperature and humidity data of a cloud system. The millimeter wave cloud radar and the microwave radiometer are configured to obtain cloud water content profiles. The wind profile radar is configured to obtain a horizontal wind speed of the cloud system. The Doppler wind lidar is configured to obtain the vertical motion speed of a cloud bottom. The computing device is configured to calculate the total amount of cloud water according to the temperature and humidity data of the cloud system, the cloud water content profiles, the horizontal wind speed of the cloud system and the vertical motion speed of the cloud bottom.
Abstract:
A method of realizing single direction chaotic rotation speed of permanent magnet synchronous motor is provided powered by a three-phase full-bridge inverter.
Abstract:
A macro-micro actuated distended guide rail precision rotation apparatus, having a housing of a torque motor and a bearing housing, both fixedly arranged on an upper surface of a base, and a bearing sleeved on the bearing housing. The inner ring of the bearing sleevingly connected to an intermediate rotating body connected to a bearing inner ring cap. A grating is provided at a lower end of the bearing inner ring cap. A connecting piece is arranged on the upper surface of the housing of the torque motor. The lower end of the connecting piece is fixedly connected to a rotary shaft of the torque motor. The connecting piece and the intermediate rotating body are both connected to the lower end of a fine movement mechanism fixedly connected to a rotary worktable. The rotation apparatus allows for highly precise macro-and-micro linked control, and for rotation control of great rotation range.
Abstract:
An optimization method for bending rebound quantity of aluminum roll forming includes the following steps: S1, analyzing the process of aluminum roll forming, and determining decision variables of aluminum rebound quantity and thickness reduction; S2, constructing the optimization model of the bending rebound quantity of aluminum roll forming based on the multi-objective optimization algorithm and clarifying constraints in the process of aluminum roll forming; S3, based on characteristics of the model in S2, proposing the corresponding algorithm to optimize the aluminum rebound quantity and thickness reduction; S4, updating the decision variables that affect the aluminum rebound quantity and thickness reduction; S5, judging the iteration stop condition, and outputting the scheme that improves the bending rebound quantity of roll forming aluminum. The optimization method solves the problem of large bending rebound quantity in roll forming technology, improves the accuracy of roll forming process and production efficiency, and enhances production flexibility.
Abstract:
An ecological flow determination method for considering a lifting amount a belongs to a technical field of environmental engineering and includes the following steps: collecting, by a collecting device, data needed to calculate an ecological flow; determining, by a calculating device, an ecological base flow; selecting an upper limit and a lower limit of the ecological base flow so as to determine a range of the ecological base flow; verifying the lower limit of the ecological base flow; calculating water demands of landscape wetland, sediment discharge and dilution self purification of three service objects; comparing the water demands of the three service objects so as to determine the lifting amount, and finding out a minimum value and a maximum value to determine a lower limit and an upper limit of the lifting amount in the range; combining the ecological base flow and the lifting amount to determine the ecological flow.
Abstract:
A variable-size fully-automatic 3D printing system based on a cylindrical coordinate system includes a base provided with a retractable work platform; the base is provided with a vertical support side plate on a side thereof; an upper end of the support side plate is connected to a top plate, and the top plate is located directly above the base; a lower side of the top plate is connected to a sleeve via a column seat; a lower end of the sleeve is provided with a protrusion; a lower end of the protrusion is connected with a cross beam; a lower side of the cross beam is provided with a ball screw a, one end of the ball screw a is connected to a power end of a first servo motor disposed at an outer end of the cross beam.
Abstract:
A serially-connected ball screw pair and piezoelectric actuator macro-micro driving and guiding device includes, from the bottom to the top, a sliding seat (1), a ball screw pair, a sliding table guide rail pairs, a nut seat (6), a piezoelectric actuator (7), a micro-moving table, a nut seat guide rail pairs and a sliding table (1). The axis of a ball screw is symmetric with respect to two sliding table rail pairs, a nut (3) of the ball screw pair is fixedly mounted into the nut seat (6), one end of the piezoelectric actuator (7) is fixedly connected with the nut seat (6) and the other end thereof is fixedly connected with the micro-moving table (8), the axis of the piezoelectric actuator is symmetric relative to two sliding table rail pairs, an upper surface of the micro-moving table is fixedly mounted to a lower surface of the sliding table, and two nut rail pairs are symmetric relative to the axis of the ball screw. The ultra precision feeding in a long stroke within a full journey can be achieved; and the piezoelectric actuator only endures the driving force without enduring the driving torque generated by the driving force of the ball screw pair, thus, so that the piezoelectric actuator is in a good stressed status, which is applicable to a large-load ultra-precision feed system.
Abstract:
A device and a method for testing the rigidity and non-linear relationship of the coupling interface for cylindrical fitting including an axial loading assembly which is provided along a horizontal central line within a side wall of a frame test bench and contacting with the test-piece shaft via a steel ball, a radial loading assembly downward provided along a vertical central line of top board of the frame test bench, a tip of a perpendicular loading part of the radial loading assembly extending into the outer housing of the test-piece housing fixed on an upper plane of a bottom wall of the frame test bench, with the test-piece shaft and the test-piece housing fitted and connected to each other via a coupling interface for cylindrical fitting; a plurality of displacement sensors fixed on the test-piece housing, and test heads of respective displacement sensor assembly aiming at the test-piece shaft.
Abstract:
The present invention discloses a determination method for a preferred habitat of fish and a terminal device, wherein the method comprises: acquiring parameter information of a water environment in which target fish is located, and establishing a 3D water environment model by utilizing the parameter information of the water environment; determining an ecological function of the target fish and constructing a bio-simulation model on the 3D water environment model by combining the ecological function; acquiring a movement locus of the target fish in the bio-simulation model and determining potential habitats of the target fish according to the movement locus; and determining the preferred habitat of the target fish from the potential habitats by utilizing a preference learning model based on a density accumulation method.
Abstract:
This invention discloses a boron-containing titanium-based composite powder for 3D printing, consisting of 0.5%-2% by weight of titanium diboride and 98%-99.5% by weight of titanium sponge. The invention further discloses a method of preparing such composite powder, where the element boron is introduced to the titanium powder through rapid solidification, which significantly improves the solid solubility of boron in Ti, enabling the introduction of part of the boron into the titanium matrix to form supersaturated solid solutions. The reinforcement phase TiB in the boron-containing titanium-based composite powder prepared herein can be precisely controlled in grain size ranging from the nanometer scale to the micrometer scale through temperature or energy density, thereby preparing the titanium-based composite materials with different sizes of reinforcement phases to meet different mechanical requirements.