Abstract:
Methodology and apparatus are disclosed for transmitting data to a tire electronics device contained in a tire. The tire electronics device includes a vibration sensor and microcontroller configured so that vibrations sensed by the vibration sensor may be analyzed to determine if the vibrations occurred according to a predetermined sequence. Detection of the predetermined sequence of vibrations may be used to trigger data transmission from the tire electronics device or may be used as an indication to the tire electronics device that it should store additional data or modify its operation in a predetermined fashion. Data may be transmitted to the tire electronics using a variety of mechanical and electromechanical devices including permanently or temporarily installed traffic lane devices or portable mechanical or electromechanical devices.
Abstract:
Excessively high or low tire pressure is detected automatically with a warning signal generated for the operator. A device is attached to each wheel and includes a spring-loaded piston mounted for reciprocation in a cylinder formed in the device. The cylinder is provided with a porting arrangement which opens only at certain pressure limits. When the ports are opened a sonic or ultrasonic signal is generated and detected by sensors located in proximity to each wheel. The signals detected by the sensors are processed and utilized to actuate a warning signal that provides a visual and/or audio output for the operator. Means are provided for discriminating between background noise and the generated signal as well as to discriminate as to the location of the affected tire. In a modification of the invention, a reserve chamber is integrated into the body of the wheel and is adapted to replenish automatically air lost from the tire.
Abstract:
Excessively high or low tire pressure is detected automatically with a warning signal generated for the operator. A device is attached to each wheel and includes a spring-loaded piston mounted for reciprocation in a cylinder formed in the device. The cylinder is provided with a porting arrangement which opens only at certain pressure limits. When the ports are opened a sonic or ultrasonic signal is generated and detected by sensors located in proximity to each wheel. The signals detected by the sensors are processed and utilized to actuate a warning signal that provides a visual and/or audio output for the operator. Means are provided for discriminating between background noise and the generated signal as well as to discriminate as to the location of the affected tire. In a modification of the invention, a reserve chamber is integrated into the body of the wheel and is adapted to replenish automatically air lost from the tire.
Abstract:
A system is provided for use with various types of vehicles employing pneumatic tires to signal the operator that the tire pressure is beyond a preset range. A spring-loaded pressure responsive piston is adapted to reciprocate within a valve structure in response to changes in tire pressure. If the piston is displaced one way or other beyond the predetermined range, air is released to operate a whistle detected by a sensing system on the vehicle which, in turn, generates a signal for the operator.
Abstract:
A system is provided for use with various types of vehicles employing pneumatic tires to signal the operator that the tire pressure is beyond a preset range. A spring-loaded pressure responsive piston is adapted to reciprocate within a valve structure in response to changes in tire pressure. If the piston is displaced one way or other beyond the predetermined range, air is released to operate a whistle detected by a sensing system on the vehicle which, in turn, generates a signal for the operator.