Abstract:
An airborne vehicle having a wing-body which defines a wing-body axis and appears substantially annular when viewed along the wing-body axis, the interior of the annulus defining a duct which is open at both ends. A propulsion system is provided comprising one or more pairs of propulsion devices, each pair comprising a first propulsion device mounted to the wing-body and positioned on a first side of a plane including the wing-body axis, and a second propulsion device mounted to the wing-body and positioned on a second side of the plane including the wing-body axis. A direction of thrust of the first propulsion device can be adjusted independently of the direction of thrust of the second propulsion device and/or a magnitude of thrust of the first propulsion device can be adjusted independently of the magnitude of thrust of the second propulsion device. In certain embodiments the wing-body appears swept forward when viewed from a first viewing angle, and swept backward when viewed from a second viewing position at right angles to the first viewing angle.
Abstract:
Vibration isolation devices and associated systems and methods are disclosed herein. In one embodiment, for example, an unmanned aircraft can include a fuselage having a first fuselage section and a second fuselage section adjacent to and at least approximately longitudinally aligned with the first fuselage section. The aircraft can also include at least one vibration isolation device coupling the first fuselage section to the second fuselage section. The vibration isolation device is translationally stiffer along a longitudinal axis than it is along a lateral and a vertical axis, and rotationally stiffer about a pitch and a yaw axis than it is about a roll axis.
Abstract:
An aircraft arrangement for Mini or Micro UAV comprising a fore wing (14) and an aft wing (12) in tandem closed-coupled arrangement. The aft wing (12) has side panels (18) and control surfaces (19), and tapered planform with positive sweep, while the fore wing (14) has non-positive trailing edge sweep. The fore wing (14) and the aft wing (12) are disposed at different height, and the aircraft arrangement has no other wings or tail arrangements.
Abstract:
A small unmanned airplane includes; a main wing having a camber airfoil whose under surface is approximately flat, narrowing in the shape of taper to a blade tip, leading edge of which holds sweepback angle, of flying wing type which has an aerodynamic surface of tailless wing type and is low aspect ratio; movable flaps extending approximately extreme breadth in trailing edge part of both left and right sides of the main wing, having a dihedral angle at least in level flight; vertical stabilizers placed at blade tips of left and right of the main wing; and two propellers installed on the top surface of the main wing. This can materialize miniaturization and weight saving of a small unmanned airplane for individual carrying capability and for suitability for such as lift-off by hand throw.
Abstract:
An unmanned aerial vehicle (UAV) in the form of a “tail sitter” flying wing adapted for vertical take off and landing and transitions between flight as a helicopter and wing-borne flight. The vehicle is electrically powered from onboard batteries and equipped with rotors on miniature helicopter rotor heads at the tips of the wing for both lift, during take off and landing, and forward thrust. In planform the wing comprises, to each side of its longitudinal axis, an inner section with swept back leading and trailing edges, and an outer section with a leading edge more perpendicular to the longitudinal axis, being only mildly swept back or substantially unswept, and a swept forward trailing edge.
Abstract:
An unmanned aerial vehicle (UAV) is provided, that is cost effective to use and manufacture and that includes a low count of component parts, allowing mission planners to use the UAVs in a disposable manner. The UAV includes an airframe having a central body and wings extending from the central body, defining an interior cavity. The airframe includes an upper and a lower shell, each configured of a unitary piece of plastic. The upper and lower shells have walls among them that define a fuel tank and a payload bay in a stacked configuration. The airframe can further include a payload cover configured to enclose the payload bay and to contribute to the central body of the airframe. A launch assembly is also provided. In a first configuration, a launch assembly is provided, that includes a container for housing multiple UAVs and a deployment mechanism that initiates rapid ejection of the UAVs from the container. In a second configuration, a launch assembly is provided, that includes an elastic tether connecting a UAV to an accelerated mass for gentle acceleration to flight speed under a stable tow.
Abstract:
A long endurance powered aircraft includes a fuselage, a propeller coupled to the fuselage, a wing coupled to the fuselage, and an energy storage system disposed within the fuselage. The wing includes an adjustable surface area including solar cells configured to collect incident solar energy and convert the collected incident solar energy to electrical energy for powering the aircraft during daylight flight. The energy storage system is configured to convert excess electrical energy converted from collected incident solar energy to chemical energy, store the chemical energy, and convert the stored chemical energy to electrical energy for powering the aircraft during night flight.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes a launch carriage that moves along a launch guide. The carriage can accelerate when portions of the carriage and/or the launch guide move relative to each other. A gripper carried by the launch carriage can have at least one grip portion in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the aircraft as the launch carriage decelerates, releasing the aircraft for takeoff. A brake can arrest the motion of the gripper after launch.
Abstract:
A ring-wing aircraft suited particularly, although not exclusively, to use in micro-unmanned air vehicles (UAV's) with ring-wings. An aircraft (10) according to the invention comprises a ring-wing (11) defining a duct (16) with a longitudinally-extending central axis (31), propulsion element (15) located within the duct and moveable aerofoils (13, 18) for controlling the aircraft in flight, the ring-wing being truncated obliquely at one end, that end being the rear (11b) when in horizontal flight, to form a ring-wing with opposed sides of unequal length. This arrangement produces center of mass offset from the central axis of the ring-wing, the pendulum effect will ensure that the aircraft will roll so that its center of mass will always be at the lowest height possible when the aircraft is airborne. Therefore the aircraft has a preferred orientation, and the control surfaces can be oriented with respect to this preferred orientation. In addition, the oblique truncation at the rear keeps the center of mass towards the front of the aircraft thereby giving improved stability in all three axes.
Abstract:
A parachute system for a miniature aircraft having a storable parachute mounted on an upper surface of the aircraft. The system includes a canopy having a stored condition and an expanded condition. A plurality of suspension lines have first ends connected to the periphery of the canopy and second ends connected to an elastic member. First and second risers are connected by their first ends to the upper surface of the aircraft between the front end and center of gravity on either side of the longitudinal axis and by their second ends to the elastic member. A restraint system releasably restrains the parachute in the stored condition on the top surface of the aircraft; and a release system coupled to the restraint system releases the parachute upon command such that aerodynamic forces will cause the parachute to open.