Abstract:
First turbine stage 14 rotates at low speed, doing moderate work, and driving a low pressure pump (22). Second turbine stage 16 rotates at high speed, doing a major portion of the work, and drives a high pressure pump (28). The low speed pump is compatible with suction requirements, and the second turbine stage does the substantial work at high efficiency.
Abstract:
A thrust engine is disclosed in the form of a hybrid staged combustion-expander topping cycle engine. The engine comprises a mixed cycle, one cycle being an expander cycle (14) operating at low temperatures and the other being a staged combustion cycle (12) operating at a higher temperature. A portion of liquid hydrogen from a fuel pump (16) is passed in heat exchange relation with the engine nozzle (22) for cooling same and heating the hydrogen, and the heated hydrogen is passed to an oxidizer turbine (28) for driving a liquid oxygen pump (81). Another portion of the liquid hydrogen from the fuel pump is passed in heat exchange relation with the engine thrust chamber (21) and combustor (20), and a portion of the resulting heated hydrogen is introduced, together with a portion of the pressurized liquid oxygen from the liquid oxygen pump, into a preburner (20) for combustion therein, and passage of the combustion gasses to a fuel turbine (26) for driving the fuel pump. A portion of the liquid hydrogen discharged from heat exchange relation with the thrust chamber and combustor is introduced into the combustor, together with a portion of the liquid oxygen discharged from the liquid oxygen pump, for combustion and passage of the combustion gases to the thrust chamber and expansion in the nozzle. The combustion gases discharged from the fuel turbine are mixed with the hydrogen gases discharged from the oxidizer turbine, and such mixture is also introduced into the combustor.
Abstract:
A bi-propellant self-contained propulsion system is provided for powering rockets. A plurality of turbopump assemblies are provided to take liquid propellants from low pressure storage tanks to a substantially higher pressure thrust chamber. Substantially all of the liquid propellants are pressurized and gasified within the plurality of turbopumps. Substantially all of the gasified propellants are then used to drive the turbopumps that pressurize the liquid propellants. Gasification preferably occurs within a preburner internal to the turbopump assembly that combines a small portion of one of the propellants with a substantial portion of the other. The proportions are selected so that gasification of all of the propellants is ensured yet relatively low preburner temperatures are maintained. A multi-stage pintle assembly may be provided to vary the exit-to-throat area ratio of the nozzle. The total thrust and the mixture ratio may be controlled by shutting down some of the turbopumps. Actuation of the pintle is preferably coordinated with the shutting down of turbopumps to maintain a relatively constant thrust chamber pressure. A nozzle skirt insert is provided to enhance the low altitude performance of the rocket engine and the high altitude performance of the rocket engine.
Abstract:
The present invention is related to a liquid fuel rocket engine of the type that a liquid fuel is boosted in pressure by way of a booster means. Thus boosted liquid fuel is gasified with a fuel cooling jacket of a fuel combustor means with an expansion pressure of thus gasified fuel being adapted to energize the booster means, and the gasified fuel is sent to the fuel combustor means so as to be combusted therein to produce a combustion gas to be discharged outwardly serving as a propulsive effort of the rocket engine, wherein there is mounted an expansion nozzle cooling jacket means around the circumference of a high expansion nozzle means of the combustor means, wherein part of the gasified fuel from the combustor cooling jacket means is directed into the expansion nozzle cooling jacket means to be reheated therein resulting in an increased potential energy to be utilized as a potential energy for driving the booster means, and wherein the remaining major part of gasified fuel from the combustor cooling jacket means is fed intact into the combustor means, not utilized to energize the booster means, so that it may be combusted to be discharged as propulsive force, whereby a pressure loss of the gasified fuel is held to a minimum, while establishing a potential energy made available for driving the booster means.
Abstract:
A method of operating a liquid fuel rocket engine having at least first and second propellant component pumps, driven by a gas turbine which is connected to discharge its turbine propulsion gases through a secondary thrust nozzle, includes a main engine having a combustion chamber with a thrust nozzle, an initial expansion portion with an expansion corresponding to ground pressure and a final expansion portion connected to the initial expansion portion and terminating in a thrust discharge operating substantially at vacuum and with means for circulating at least one propellant component through cooling channels of the walls of both expansion portions, comprises, directing a first component into the combustion chamber, and directing at least a first portion of a second propellant component into the walls of the initial expansion portion and then into the combustion chamber and directing a second portion of the second propellant component into the walls of the final expansion portion so that they are heated therein and, thereafter, directing the heated propellant component gases into the turbine. The liquid fuel rocket engine for operation in outer space, comprises, wall means defining a combustion chamber having an injection head and a thrust nozzle part with a narrow neck portion, an initial expanding portion and a final expanding portion which terminates in a thrust discharge.
Abstract:
A rocket propellant feed system utilizing a bleed turbopump to supercharge a topping turbopump. The bleed turbopump is of a low pressure type to meet the cavitation requirements imposed by the propellant storage tanks. The topping turbopump is of a high pressure type and develops 60 to 70 percent of the pressure rise in the propellant.
Abstract:
A liquid fueled rocket engine of the so-called main current type in which combustion gases are generated in a precombustion chamber and directed in series to a fuel component pump drive turbine and to a main combustion chamber for generating thrust gases, includes one or more control nozzles or control nozzle groups which are connected to receive the exhaust gases from the turbine with the addition of small partial amounts of a propellant component.