Abstract:
The present invention relates to a method and furnace for generating straightened flames in a steam methane reformer or ethylene cracking furnace where fuel-staged burners are used. Fuel staging may be used for reducing NOx emissions. Criteria for generating straightened flames are provided. These criteria relate to oxidant conduit geometry and furnace geometry. Techniques for modifying the furnace and/or burners to achieve these criteria are also provided.
Abstract:
A tangential fired boiler includes a circumferential wall defining a combustion zone, the circumferential wall being generally rectangular when viewed along a generally horizontal cross-section. A fireball is disposed within the combustion zone, the fireball rotating about an imaginary axis when viewed along a generally horizontal cross-section. A corner member is disposed proximate to at least one corner of the combustion zone, with a plurality of fuel inlets disposed along the corner member. The plurality of fuel inlets inject fuel into the combustion zone, and at least some of the plurality of fuel inlets inject fuel in a direction which is angled with respect to a normal of the corner member and upstream relative to a direction of rotation of the fireball.
Abstract:
A method and system is provided for combusting a fuel having application to a heat consuming device such as a boiler or furnace or a reactor. An oxygen-containing stream is introduced into one or more oxygen transport membranes subjected to a reactive purge or a sweep gas. The oxygen transport membrane(s) can advantageously be subjected to a reactive purge or a sweep gas passing in a cross-flow direction with respect to the membranes to facilitate separation of the oxygen. In case of a reactive purge, temperature control of the oxygen transport membrane(s) is effectuated by the use of a suitable heat sink. Further, the oxygen transport membranes can be arranged in a row and be connected in series such that retentate streams of ever lower oxygen concentrations are passed to successive oxygen transport membranes in the row. The fuel or sweep gas can be introduced in a direction counter-current to the bulk flow of the retentate streams.
Abstract:
A method for operating a furnace comprising generating NOx at a first NOx generation rate by combustion at a distance from the flue of the furnace and generating NOx at a second NOx generation rate, which is less than the first NOx generation rate, by combustion closer to the flue, and thereafter passing the NOx through the interior of the furnace to and through the flue while both the NOx generated by the first rate and the NOx generated by the second rate dynamically progress toward equilibrium.
Abstract:
A method and apparatus for reducing the formation of nitrogen oxides during combustion in a roof-fired furnace is disclosed. By blocking at least some of the fuel nozzles associated with a roof-fired burner while leaving open the secondary air openings associated with the blocked fuel nozzles, reduction in NOX emissions from roof-fired furnaces is accomplished. This blocking results in the creation of a localized fuel-rich or just slightly fuel-lean environment near open fuel nozzles because part of the secondary air needed for combustion is being added at a location distant from where the initial combustion occurs. By creating a localized fuel-rich or slightly fuel-lean environment near the open fuel nozzles, the initial stages of combustion occur with little or no excess oxygen present. Because much of the fuel-bound nitrogen is liberated during the initial stages of combustion, it will preferentially react to form molecular nitrogen rather than nitrogen oxides because of the lack of available oxygen. Further, by the time all the secondary air is mixed with the pulverized coal to complete substantially the combustion, the flame temperature will have been sufficiently lowered by heat transfer to the boiler tubes that thermal formation of nitrogen oxides will be reduced. This invention works well in those roof-fired furnaces where individual burners are composed of multiple fuel nozzles and the fuel nozzles eject primary air and fuel between boiler tubes which form the furnace roof.
Abstract:
A method and apparatus for ultra-low pollutant emission combustion of fossil fuel is disclosed in which a first portion of fuel to be combusted is introduced into a primary combustion chamber together with primary combustion air, producing either a reducing or oxidizing combustion zone and a portion of water having a heat capacity equivalent to the heat capacity of a portion of primary combustion air. The first portion of fuel is combusted in the primary combustion chamber and the combustion products derived therefrom pass through an orifice into a secondary combustion chamber. Also introduced into the secondary combustion chamber is a second portion of fuel and secondary combustion air in an amount sufficient to complete combustion of the total amount of fuel in the apparatus. In addition, water is introduced into the secondary combustion chamber in an amount having a heat capacity equivalent to an amount of secondary combustion air. The products of combustion from the secondary combustion chamber are passed through an orifice into a dilution chamber into which dilution air is introduced, producing ultra-low pollutant emissions vitiated air. The vitiated air is subsequently discharged from the dilution chamber.
Abstract:
An apparatus and method for ultra-low pollutant emission combustion of fossil fuel wherein an elongated cyclonic primary combustion chamber has a cross-sectional area about 4 to about 30 percent that of an elongated cyclonic secondary combustion chamber and a volume about 1 to about 20 percent the combined primary and secondary combustion chamber volume. A first fuel portion of about 1 percent to about 20 percent of the total fuel and primary combustion air in an amount selected from about 40 to about 90 percent and about 140 percent to about 230 percent of the stoichiometric requirement for complete combustion of the first fuel portion is introduced into the primary combustion chamber. A second fuel portion of about 80 to about 99 percent of the total fuel is introduced into the secondary combustion chamber with secondary combustion air in an amount of about 150 percent to about 260 percent of the stoichiometric requirement for complete combustion of the fuel. In preferred embodiments cyclonic flow is maintained through the combustor.