Abstract:
A tangential fired boiler includes a circumferential wall defining a combustion zone, the circumferential wall being generally rectangular when viewed along a generally horizontal cross-section. A fireball is disposed within the combustion zone, the fireball rotating about an imaginary axis when viewed along a generally horizontal cross-section. A corner member is disposed proximate to at least one corner of the combustion zone, with a plurality of fuel inlets disposed along the corner member. The plurality of fuel inlets inject fuel into the combustion zone, and at least some of the plurality of fuel inlets inject fuel in a direction which is angled with respect to a normal of the corner member and upstream relative to a direction of rotation of the fireball.
Abstract:
A secondary air injector for use with an exhaust flow simulation system. A typical exhaust flow simulator is a burner-based system, in which exhaust from a combustive burner is exhausted through an exhaust line. The secondary air injector is placed downstream the burner to create a desired thermal condition or composition of the exhaust gas. The injector comprises a hollow ring fitted around the exhaust line, with multiple holes for evenly injecting the air into the exhaust line.
Abstract:
A method and system is provided for combusting a fuel having application to a heat consuming device such as a boiler or furnace or a reactor. An oxygen-containing stream is introduced into one or more oxygen transport membranes subjected to a reactive purge or a sweep gas. The oxygen transport membrane(s) can advantageously be subjected to a reactive purge or a sweep gas passing in a cross-flow direction with respect to the membranes to facilitate separation of the oxygen. In case of a reactive purge, temperature control of the oxygen transport membrane(s) is effectuated by the use of a suitable heat sink. Further, the oxygen transport membranes can be arranged in a row and be connected in series such that retentate streams of ever lower oxygen concentrations are passed to successive oxygen transport membranes in the row. The fuel or sweep gas can be introduced in a direction counter-current to the bulk flow of the retentate streams.
Abstract:
A method for staged combustion in a combustor assembly includes introducing an oxidant stream and a fuel stream at a first location into a combustion chamber to produce a heated stream. A Liquid water stream and an additional oxidant stream, fuel stream or both are then introduced into the heated stream in at least one location along the heated stream downstream from the first location. The additional oxidant stream, fuel stream or both react in the heated stream to generate additional heat that vaporizes liquid water from the liquid water stream to water vapor.
Abstract:
The present invention relates to a method and furnace for generating straightened flames in a steam methane reformer or ethylene cracking furnace where fuel-staged burners are used. Fuel staging may be used for reducing NOx emissions. Criteria for generating straightened flames are provided. These criteria relate to oxidant conduit geometry and furnace geometry. Techniques for modifying the furnace and/or burners to achieve these criteria are also provided.
Abstract:
A combustor for a gas turbine engine includes outer and inner liners defining a combustion chamber and an igniter mounted to the outer liner. A dome plate is disposed between the outer and inner liners and has a plurality of circumferentially spaced openings formed therein. A fuel-air mixer is disposed in each one of the openings; each fuel-air mixer includes a swirler mounted in the corresponding opening and a fuel nozzle received in the corresponding swirler. Two adjacent ones of the swirlers are low air flow swirlers in general circumferential alignment with the igniter and the rest of the swirlers are higher air flow swirlers. Each one of the fuel nozzles provides a similar amount of fuel so that the two fuel-air mixers having low air flow swirlers produce a local region of increased fuel-to-air ratio in the vicinity of the igniter.
Abstract:
A process and apparatus for cyclonic combustion with ultra-low pollutant emissions and high efficiency wherein a fuel and primary combustion air mixture is tangentially injected into a reducing primary combustion zone of a cyclonic combustor. The primary combustion air is injected into the reducing primary combustion zone in an amount equal to between about 30% and about 90% of a stoichiometric requirement for complete combustion of the fuel. Secondary combustion air is tangentially injected into an oxidizing secondary combustion zone of the cyclonic combustor, in an amount equal to between about 10% and about 90% of the stoichiometric requirement for complete combustion of the fuel. Primary combustion products from the reducing primary combustion zone are mixed with the tangentially injected secondary air for completing combustion within the oxidizing secondary combustion zone. Combustion chamber walls which define the reducing primary combustion zone and the oxidizing secondary combustion zone are water-cooled.
Abstract:
A method comprises providing a combustion apparatus having an outer vessel and an inner conduit. The outer vessel has a first wall that defines an internal volume. The inner conduit is at least partially positioned within the internal volume and provides a fluid passageway that is in communication therewith. The method further comprises introducing oxygen into the internal volume in a manner such that the oxygen swirls within the internal volume and around the inner conduit. Furthermore, the method comprises introducing fuel into the internal volume, and combusting the fuel and oxygen at least partially therewithin. The combustion of the fuel and oxygen produces reaction products and the method further comprises discharging at least some of the reaction products from the internal volume via the fluid passageway of the inner conduit.
Abstract:
Combustion method and apparatus for NOx reduction which are capable of achieving NOx reduction with the value of exhaust NOx under 10 ppm, as well as CO reduction at the same time. The combustion method for fulfilling NOx reduction and CO reduction by suppressing temperature of combustion gas derived from a burner comprises a NOx reduction step for suppressing combustion gas temperature in such a manner that suppression of NOx generation is preferred to reduction of exhaust CO value, thereby keeping NOx value not more than a specified value, and a CO reduction step for thereafter reducing exhaust CO value resulting from the NOx reduction step to not more than a specified value.
Abstract:
A combustor for a gas turbine engine includes outer and inner liners defining a combustion chamber and an igniter mounted to the outer liner. A dome plate is disposed between the outer and inner liners and has a plurality of circumferentially spaced openings formed therein. A fuel-air mixer is disposed in each one of the openings; each fuel-air mixer includes a swirler mounted in the corresponding opening and a fuel nozzle received in the corresponding swirler. Two adjacent ones of the swirlers are low air flow swirlers in general circumferential alignment with the igniter and the rest of the swirlers are higher air flow swirlers. Each one of the fuel nozzles provides a similar amount of fuel so that the two fuel-air mixers having low air flow swirlers produce a local region of increased fuel-to-air ratio in the vicinity of the igniter.