Abstract:
Ambient light is detected by a photodiode circuit by measuring the time taken for a digital output of the photodiode circuit to change state in response to exposure of a photodiode of the photodiode circuit to that ambient light. A nominal time for state change is calculated based on photodiode circuit characteristics. Furthermore, an effective time for the photodiode circuit digital output to change state is determined in a calibration mode where the photodiode has been disconnected and a reference current is applied to the circuit. An illumination value of the detected ambient light is then calculated as a function of: the measured time, the effective time and the nominal time.
Abstract:
According to a receiving circuit includes a light receiving element, a signal voltage generation portion, a comparator, a reference voltage generation portion and a switch. The light receiving element receives a light signal and outputs a light current corresponding to the light signal. The signal voltage generation portion converts the light current into a signal voltage and outputs the signal voltage. The comparator compares the signal voltage with a first threshold value or a second threshold value. The reference voltage generation portion outputs a reference voltage input to the comparator. The switch changes the reference voltage to one of the first threshold value and the second threshold value based on an output of the comparator.
Abstract:
The present invention provides a photo-sensor with a stable current limiting function and pixel reset function. When the incident light quantity of the phototransistor is equal to or less than a predetermined quantity and the base potential of the phototransistor is in a first potential of an operation point in a stationary state, an MOSFET for discharging an electric charge is controlled so as to be turned OFF. In addition, when the incident light quantity of the phototransistor is equal to or more than the predetermined quantity, a MOSFET for detecting an electric current is controlled so as to operate in a saturation region. When the base potential of the phototransistor has changed to a second potential from the first potential, the MOSFET for discharging an electric charge is controlled so as to be turned ON.
Abstract:
A sensitivity adjustment device may include: a light receiver configured to receive a reflected light that has been emitted from a light emitting unit and reflected by a reflector, the light receiver being configured to convert the reflected light into an analog electrical signal; an A/D converter configured to convert the analog electrical signal into a digital signal; a threshold value calculator configured to calculate a threshold value with reference to a voltage level of the digital signal that has been sequentially converted and output by the A/D converter; and a determination unit configured to compare a high voltage level of the digital signal with the threshold value.
Abstract translation:灵敏度调节装置可以包括:被配置为接收从发光单元发射并被反射器反射的反射光的光接收器,所述光接收器被配置为将所述反射光转换为模拟电信号; A / D转换器,被配置为将模拟电信号转换为数字信号; 阈值计算器,被配置为参考由A / D转换器顺次转换并输出的数字信号的电压电平来计算阈值; 以及确定单元,被配置为将数字信号的高电压电平与阈值进行比较。
Abstract:
An apparatus using reconfigurable integrated sensor elements with an efficient energy harvesting capability is described. Each sensor element has sensing and energy harvesting mode. In the sensing mode, the sensor element measures an environmental characteristic by generating electrical charge and outputs a time-encoded signal indicative of the measurement. In the energy harvesting mode, the sensor element itself is used to harvest energy from ambient energy source and makes it available to other sensor elements or circuit components. The sensing element is switched from the sensing mode to the energy harvesting mode when the electrical charge reaches a predetermined threshold. An image sensor device using asynchronous readout for harvesting energy from incident light while generating images is also described.
Abstract:
A system configured to maintain a consistent local-oscillator-power-to-primary-signal-power ratio (LO/SIG ratio). The system may be configured to: receive the voltages for a plurality of optical signal components split from a combined SIG and LO signal; determine individual factors for the plurality of optical signal components; average the individual factors; determine whether the averaged output is less than a minimum reference value for a variable optical attenuator; determine whether the averaged output is greater than a maximum reference value for the variable optical attenuator; change a value associated with the averaged output to the minimum reference value, due to determining that the averaged output is less than the minimum reference value; change a value associated with the averaged output to the maximum reference value, due to determining that the averaged output is greater than the maximum reference value; and change a new value associated with the averaged output to be transmitted to the variable optical attenuator.
Abstract:
The output of an avalanche photodiode (APD) comprises a “photocurrent” component comprising photon initiated events resulting from the interaction of photons with the APD and a “dark current” component comprising dark carrier events arising in the APD even when the APD is not exposed to light. Differences in the pulse height distributions of photon initiated events and dark carrier initiated events are used to statistically discriminate between photocurrent and dark current components of APD output.
Abstract:
Systems and methods for reducing erroneous weighing of items such as by detecting items extending beyond a periphery of a weigh platter whereby in one configuration, the system employs a light guide for routing a light beam to a detector operative to detect interruption of the beam due to an item encroaching upon or overhanging an edge of the platter. In another configuration, the scale includes a perimeter gap between the platter outer edge and scanner housing frame or checkout counter, a light beam directed angularly upward through the gap is partially obstructed by the frame and platter whereby light exits the gap forming a light plane, wherein an object placed on the platter extending across the gap intersects the light plane thus scattering light rays, some of which are sensed by a detector. Various indicators for alerting the operator of off-scale detection are also described.
Abstract:
Light from a photodiode is detected using a phototransistor. At the time of startup, set data concerning a detected current is received at a communication interface, and the received set data is compared with the detected current. A control unit adjusts a current of the phototransistor so that the detected current matches the set data.