Abstract:
Ionising radiation detector with solid radiation conversion strip and manufacturing process for this detector. This detector, that can for example be used in radiography, is formed by placing conversion means comprising the strip (10) and collection means (30) on each side of an excitable medium that interacts with charged particles resulting from the conversion of radiation (3), to generate other particles. The collection means collect these other particles and output signals representative of the radiation.
Abstract:
A microstrip gas chamber (MSGC) comprises a gas volume, an electrically insulating substrate having a surface exposed to the gas volume. A set of alternating cathode strips and anode strips are provided on the surface of substrate, a high voltage source for establishing a potential difference between the anode and cathode strips is provide to produce an electric field sufficient for avalanche multiplication in said gas medium in a region near the anode strips. Grid electrodes are provided on the surface at each gap between the cathode strip and anode strip. The multi-grid type MSGC can offer very narrow gap between neighboring electrodes that might reduce a surface charge effect considerably. The multi-grid type MSGC may be applied to the field where both high gain and the stable operation are required.
Abstract:
The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.
Abstract:
The present invention relates to a microstrip gas chamber and microstrip plate capable of reading signals from readout electrodes provided at a rear surface of the substrate in a superior manner while having a simple and compact configuration. The microstrip plate comprises an electrically insulating substrate 1, cathodes 2 and anodes 3 arranged alternately at the surface of the substrate 1, read-out electrodes 4 arranged so as to intersect the cathodes 2 and anodes 3 at the rear surface of the substrate 1, wherein a plurality of unitary regions 20 are provided at the surface of the substrate 1 and each unitary region 20 is electrically floated from the cathode via a resistance region 5.
Abstract:
X-ray imaging systems are provided. A representative x-ray imaging system includes a gas detector that is configured to retain a volume of gas. The gas detector incorporates a first detection circuit corresponding to a first region of the gas and a second detection circuit corresponding to a second region of the gas. The first detection circuit is adapted to provide a first signal indicative of an intensity of x-rays radiating into the first region of the gas and the second detection circuit is adapted to provide a second signal indicative of an intensity of x-rays radiating into the second region of the gas. Methods and other systems also are provided.
Abstract:
A detector for detection of ionizing radiation comprises a chamber (13) filled with an ionizable gas, and including a first (17, 19) and a second (21) electrode arrangement between which a first voltage (U1, U2) is applicable, a radiation entrance (33) arranged such that radiation (1) can enter the chamber between and substantially in parallel with the first and second electrode arrangements, for ionization of the ionizable gas, an electron avalanche amplification arrangement (15) including an avalanche cathode arrangement (25) and an avalanche anode arrangement (27), between which a second voltage (Ua) is applicable, and a read-out arrangement (29), wherein the first voltage is applicable for drifting electrons created during ionization towards the electron avalanche amplification arrangement, the second voltage is applicable for avalanche amplification of said electrons, and the read-out arrangement is arranged for detection of the electron avalanches and/or correspondingly produced ions. The invention comprises that the chamber is arranged such that radiation entering through the radiation entrance will firstly enter a first chamber section having a first distance (d1) between the first and second electrode arrangements and then enter a second chamber section having a second distance (d2) between the first and second electrode arrangements, the first (d1) and second (d2) distances being substantially different, and that the read-out arrangement is arranged such that electron avalanches, and/or correspondingly produced ions, derivable mainly from ionization in the respective chamber section are separately detectable.
Abstract:
The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.
Abstract:
A parallax-free X-ray imager in which a parallel X-ray beam is directed to a crystal for illuminating an entrance window is formed in a vessel filled with an ionizing gas in which primary electrons are generated. A spherical conversion volume chamber is formed by the entrance window and a first and a second parallel electrodes are adapted to generate electrical equipotential surfaces of spherical shape allowing the primary electrons to drift along corresponding radial field lines. A third electrode parallel with the second electrode is provided so as to form a gas electron multiplier structure consisting of a matrix of electric field condensing areas which are adapted to operate as an amplifier of the primary electrons through an avalanche phenomenon. A signal readout electrode is provided to allow a bi-dimensional readout in the absence of parallax readout phenomenon.
Abstract:
Apparatus and method for quantitative autoradiography analysis involving beta-ray radiation comprises a converter 2 and wire chamber 3 in association with a membrane which provides a seal for the housing in which the converter and wire chamber are accommodated, the membrane also providing a "window" for the radioactive samples.
Abstract:
A simplified ion chamber for determining radiation from an X-ray source with the chamber having a single emitter electrode and a collector electrode of substantially the same size. A spacer element for positioning between the emitter and the collector electrodes is composed of a molded cellular plastic sheet with open areas molded in the sheet for alignment with ion collecting areas of the collector electrode and the open areas being formed with tapered walls. The spacer element also has pathways formed by higher density areas corresponding to conductive pathways of the collector electrode.