Abstract:
A frequency-adjustable oscillator suitable for digital signal clock synchronization comprises a crystal oscillator circuit for generating a driving signal and having a voltage-variable control input for adjusting a frequency of the driving signal, a phase detector circuit for generating a phase offset signal, a filter which operates on the phase offset signal to produce a VCO control signal, a voltage controlled oscillator circuit operably linked to the filter and responsive to the VCO control signal for generating an analog controlled-frequency signal, a frequency divider circuit for generating a reduced frequency feedback signal in response to the controlled-frequency signal. The frequency-adjustable oscillator also includes a double-sided package including a platform having a central portion and an outer portion with sidewalls extending substantially upwardly and substantially downwardly from the outer portion of the platform. The upwardly extending sidewalls and the platform form a first cavity adapted to receive and electrically connect the quartz resonator. The downwardly extending sidewalls and the platform forming a second cavity adapted to receive and electrically connect at least one electronic component. A cover is coupled with the first cavity to create an isolated environment for containing the quartz resonator.
Abstract:
The invention relates to a device and a method for temperature compensation via the determination of cut-angles of a master and a slave crystal (mc, sc) employed in a master and slave oscillator (m, s). When the master and the slave oscillator (m, s) have been tuned to their center frequencies (fc_m, fc_s), then the temperature characteristic of the slave oscillator (s) is actively detuned with respect to the temperature characteristic of the master oscillator (m). In a detuned state a frequency ratio parameter (n_s) of the slave to the master output frequency (f_s/f_m) is determined and the cut-angle is determined by using this parameter (n_s) to read out the cut-angle dependent on the temperature (T) from a memory (MEM). The invention also relates to a temperature compensation device and method where two crystals of different cut-angles are used and a frequency ratio parameter is determined to determine the identity/symmetry or difference of the cut-angles. Particular useful applications of the invention are in dual-mode mobile telephones which require the use of at least two oscillators with different resonant frequencies.
Abstract:
A method and apparatus are provided for reducing a startup interval of a temperature controlled crystal oscillator chip. The method includes the steps of connecting an operating circuit of the temperature controlled crystal oscillator chip into a first configuration to reduce the startup interval following application of power and reconnecting the operating circuit into a second configuration after a predetermined time period.
Abstract:
A method and apparatus are provided for constructing a temperature controlled crystal oscillator chip. The method includes the steps of disposing a connection pad on a surface of the chip, providing a first circuit within the chip for control of a first chip function through a first interconnection with the connection pad and providing a second circuit within the chip for control of a second chip function, unrelated to the first chip function, through a second interconnection with the connection pad.
Abstract:
A system and method for programming a digitally tunable oscillator is provided. A desired output frequency is received. A tuning effect of a set of digital tuning words on a crystal resonant frequency is determined, and valid parameters of an algorithm for translating and tuning the crystal resonant frequency to a value within an error tolerance of the desired frequency, based on the determined tuning effect are calculated. Valid parameters are preferably calculated based on an intermediate tuning value, sorted by ascending divide parameter of the algorithm, and then evaluated in sorted order for ability of a tuning effect to null frequency error to within the error tolerance. The valid set of calculated parameters are then programmed into a nonvolatile memory. The oscillator control parameters may remain unprogrammed until all necessary parameters are defined. Because the device may be programmed in a single step, without intermediate presumption of nominal crystal frequency, the final plate process may be unnecessary. A high accuracy may be obtained by searching through the complete set of available parameters for a set that meets a frequency and tolerance specification. The oscillator is preferably a Cypress CY2037 device.
Abstract:
A radio communication apparatus includes a control section detecting the frequency of the intermediate-frequency signal from a mixer and adjusting the local oscillation frequency generated by a local oscillator on the basis of the detected intermediate frequency. The adjusted local oscillation frequency is supplied to the mixer to stabilize the intermediate frequency.
Abstract:
In a portable telephone which uses a CPU, a memory, a temperature sensor, a D/A converter, and an A/d converter as control elements, and which has an oscillation circuit including a crystal resonator and a variable-capacitance diode, temperature compensation of the output frequency is made by using these existing control elements. The memory is previously stored with control information for correcting an output frequency drift of the portable telephone caused by a temperature change. The temperature of the oscillation circuit is detected with the temperature sensor and converted into a digital value in the A/D converter. The CPU reads control information corresponding to the detected temperature from the memory and applies it to the variable-capacitance diode of the oscillation circuit through the D/A converter, thereby maintaining the output frequency at a constant level. Also disclosed is a method of efficiently calculating an oscillation frequency of a crystal resonator with a reduced number of points of measurement for a temperature characteristic of the crystal resonator. A method of accurately carrying out the above-described temperature compensation is also disclosed.
Abstract:
A SYSTEM FOR DIGITALLY CORRECTED THE FREQUENCY OF A CRYSTAL OSCILLAR AS A FUNCTION OF AMBIENT TEMPERATURE. AMBIENT TEMPERATURE SENSED IS CONVERTED TO DIGITAL DATA THAT IS USED TO ADDRESS A PREPROGRAMED READ ONLY MEMORY TO DETERMINE THE FREQUENCY CORRECTION FACTOR REQUIRED FOR THE AMBIENT TEMPERATURRE MEASURED. THE FACTOR IN THE FORM OF DIGITAL FREQUENCY CORRECTION WORD IS THEN CONVERTED TO AN ANALOGUE VOLTAGE AND APPLIED TO A VOLTAGE RESPONSIVE OSCILLATOR FREQUENCY VARYING DEVICE FOR CORRECTING OSCILLATOR FREQUENCY.
Abstract:
An oscillator includes a front side voltage divider, a rear side voltage divider, and an oscillation unit. The front side voltage divider includes a first resistor connected between a first and second potential sources, and a first output terminal configured to changeably connect to a connection position in the first resistor so as to vary an obtained output voltage. The rear side voltage divider includes a second resistor connected between the first output terminal and a third potential source; and a second output terminal configured to changeably connect to a connection position in the second resistor so as to vary an obtained output voltage. The oscillation unit includes a variable capacitance element with a capacitance varied according to the output voltage from the second output terminal. The oscillation unit varies an output frequency based on a variation in a resonance point associated with a variation in the capacitance.
Abstract:
An oscillator includes a front side voltage divider, a rear side voltage divider, and an oscillation unit. The front side voltage divider includes a first resistor connected between a first and second potential sources, and a first output terminal configured to changeably connect to a connection position in the first resistor so as to vary an obtained output voltage. The rear side voltage divider includes a second resistor connected between the first output terminal and a third potential source; and a second output terminal configured to changeably connect to a connection position in the second resistor so as to vary an obtained output voltage. The oscillation unit includes a variable capacitance element with a capacitance varied according to the output voltage from the second output terminal. The oscillation unit varies an output frequency based on a variation in a resonance point associated with a variation in the capacitance.