Abstract:
The present invention provides a pneumatic tire which can obtain a high wet drainage performance, roadholding ability, and wear-resistant property without sacrificing other capabilities A directional pattern is formed by a circumferential wide major groove, a first narrow circumferential minor groove, a second narrow circumferential minor groove, a first transverse groove, a second transverse groove, and a third transverse groove. The circumferential wide major groove is provided in a center region in a tire width direction of a tread. The first narrow circumferential minor groove is arranged on the outside in a tire axis direction of the circumferential wide major groove. The second narrow circumferential minor groove is arranged on the outside in the tire axis direction of the first narrow circumferential minor groove. The first transverse groove is extended from a tread end and coupled to the circumferential wide major groove. The second transverse groove is arranged between the first transverse grooves, and the second transverse groove is extended from the tread end and terminated while not coupled to the circumferential wide major groove. The third transverse groove is arranged between the first transverse groove and the second transverse groove, and the third transverse groove is extended from the tread end and terminated between the first narrow circumferential minor groove and the second narrow circumferential minor groove.
Abstract:
A pneumatic tire tread has tread elements formed by circumferential and/or lateral grooves. At least one tread element has a sipe that devolves from a constant width sipe having a three dimensional aspect in at least a portion of the radially outer portion of the sipe to a wider width groove at the base of the tread feature.
Abstract:
A reinforced blade for use in a tire vulcanization mold is provided. The reinforced blade, having a thickness of less than 0.030 inches, is configured to form a sipe in a tread of a tire in the tire vulcanization mold. The reinforced blade includes a main segment and a support segment extending from one end portion of the main segment of the reinforced blade and configured to support the end portion of the main segment of the reinforced blade in the mold during vulcanization.
Abstract:
A heavy-duty tire comprises two rows of middle blocks (11). The ground contacting face (S) of each middle block is defined as being surrounded with an axially inner longitudinal edge (14i), an axially outer longitudinal edge (14o), a first-side transverse edge (14a) and a second-side transverse edge (14b). The two transverse edges (14a and 14b) are substantially straight and substantially parallel with each other and inclined with respect to the tire axial direction. The axially inner longitudinal edge (14i) is nonlinear and has an axially inwardly protruding first-side protruding point (15a) and second-side protruding point (15b), and an axially outwardly denting part (16) therebetween. The axially outer longitudinal edge (14o) is nonlinear and has axially outwardly protruding first-side protruding point (20a) and second-side protruding point (20b), and an axially inwardly denting point (21) therebetween. The circumferential distances (Lia, Lib, Loa and Lob) between the protruding points (15a, 15b, 20a and 20b) and the adjacent circumferential ends (Pia, Pib, Poa and Pob) of the longitudinal edges (14i and 14o) are 5 to 15% of the circumferential length (Li, Lo) of the longitudinal edges (14i and 14o).
Abstract:
In a pneumatic tire, a difference Gs-Ge falls in a range of Gs-Ge≧0.10, where Gs is a groove area ratio for a wear rate 0% and Ge is a groove area ratio for a wear rate 100%. Further, a groove area ratio G for a wear rate 20% falls in a range of (Gs-G)/(Gs-Ge)≧0.30, and a groove area ratio G for a wear rate 35% falls in a range of (Gs-G)/(Gs-Ge)≧0.50.
Abstract:
A pneumatic tire has a plurality of upper surface sipes formed on an upper surface of the block and arranged in parallel so as to be spaced in a sipe width direction, and a wall surface sipe extending along a tire diametrical direction in a wall surface positioned in a longitudinal direction of the upper surface sipe. The wall surface sipe is arranged between a pair of adjacent the upper surface sipes.
Abstract:
Provided is a pneumatic tire in which left- and right-side lateral grooves extend between first main grooves and second main grooves, and in which left- and right-side sub grooves extend halfway from the second main grooves toward the first main grooves. The lateral grooves and the sub grooves are disposed alternately with each other at predetermined pitches in tire circumferential directions. The left- and right-side lateral grooves respectively include: first groove portions extending from the first main grooves; and second groove portions extending from the second main grooves while curving inwardly toward tire width directions. The left- and right-side lateral grooves are offset from each other in the tire circumferential directions. Opening portions at both ends of each of the lateral grooves, which are opened to the first main grooves and the second main grooves, are shifted from one another in the tire circumferential directions.
Abstract:
A tread surface the tire rotational direction of which is specified in one direction includes a first main see-through groove extending in the circumferential direction of the tire in a region of from 4% to 15% of the tire ground contact width from the tire equatorial plane toward each of left and right sides. Lug grooves obliquely extend from the first main see-through grooves toward the outer sides of the tire in the reverse rotational direction of the tire so as to communicate with the tire ground contact ends, the lug grooves being disposed at prescribed intervals in the circumferential direction of the tire. Blocks are defined by the lug grooves and the first main see-through grooves. V-shaped transverse grooves are disposed between the first main see-through grooves at prescribed intervals in the circumferential direction of the tire, the transverse grooves having vertexes that face to the reverse rotational direction of the tire. Blocks are defined by the transverse grooves and the first main see-through grooves. The groove width W of each transverse groove measured in the circumferential direction of the tire is ranged from 0.1 L to 0.25 L with respect to the tire circumferential length L of the block adjacent the transverse groove. The ratio ACA/GCA of the total ground contact area ACA of the blocks to the ground contact area GCA of the entire tread surface is in the range of 55% to 75%.
Abstract:
A pneumatic tire which includes a tie bar in a lateral groove disposed in a block array, the tie bar connecting adjacent blocks in a circumferential direction through the lateral groove. The tie bar is formed with a sipeing having a zigzag portion, the zigzag portion extending in a zigzag manner in a direction of a groove centerline of the lateral groove. The sipeing is a three-dimensional sipeing in which a sipeing wall surface is repeatedly recessed and projected, three-dimensionally.
Abstract:
The present invention aims to improve the wet performance while securing steering stability and holding down degradations in noise performance to minimum, and for this purpose, a pneumatic tire in which blocks are disposed at intervals at a tread portion thereof is arranged in that concave blocks with stepped concave portions that extend along block side edges, which face circumferential main grooves, and having a depth from a block top surface that corresponds to 20 to 70% of a block height are provided. The concave portions have a length in a tire circumferential direction of 40 to 95% of a length of the block side edges in the tire circumferential direction and a width in a tire axial direction of 2 to 20 mm.