Abstract:
A bicycle bearing system comprising: an integrated cup, the integrated cup having a non-flanged outer diameter; a plurality of rolling elements configured to abut and rotate against an inner surface of the cup race; an inner race configured to abut and rotate about the plurality of rolling elements, the inner race having an inner diameter; wherein the rolling elements do not have a separate outer race, but rather the inner surface of the integrated cup acts as the outer race to the rolling elements; wherein the rolling elements' sizes are maximized to the limitation that the non-flanged outer diameter is smaller or equal to a first maximum diameter, and wherein the rolling elements sizes are maximized to the limitation that the inner diameter is greater or equal to a first minimum diameter.
Abstract:
The present disclosures relates to a toroidal continuously variable transmission which includes: a rotating shaft; a pair of outside disks supported by a rotating shaft to rotate in synchronization with the rotating shaft; an inside disk supported by the rotating shaft to rotate relative to the rotating shaft; a pair of rolling bearing units, each including a radial rolling bearing capable of supporting an axial load to support the inside disk so that relative rotation with respect to the rotating shaft is possible; a plurality of power rollers arranged between the axial inside surfaces the outside disks and the axial outside surfaces of the inside disk to transmit power between them; and a preloading mechanism elastically pressing the outer ring of the radial rolling bearing in the axial direction.
Abstract:
The present disclosure relates to a heating, ventilation, and/or air conditioning (HVAC) unit including a condenser coil and a condenser fan assembly. The condenser fan assembly includes a first fan and a second fan, where the first fan and the second fan are each configured to operate to pull air through the condenser coil. The HVAC unit also includes a motor of the first fan including a housing and a shaft, where the motor is configured to operate to rotate the shaft in a first direction. The HVAC unit further includes a unidirectional bearing that is coupled to the shaft and a mounting assembly of the condenser fan assembly, where the unidirectional bearing is configured to block rotation of the shaft in a second direction that is opposite the first direction.
Abstract:
A bearing assembly configured to rotationally support a first component relative to a second component includes at least one bearing and at least one closure element configured to close an opening in the first component, which opening is disposed axially adjacent to the bearing. The closure element may be a cured body of foam that conforms to the shape of the opening or a ring mounted on the first component such that it covers the opening.
Abstract:
Example aspects of a rotating machine, a method for pre-loading a rotating machine, and a method for using a rotating machine are disclosed. The rotating machine can comprise a stator; a rotor, wherein one of the stator and the rotor comprises a mounting flange formed monolithically therewith; a bearing directly mounted to the mounting flange; and the other of the stator and the rotor directly mounted to the bearing.
Abstract:
A bearing device for an exhaust gas turbocharger, comprising a first radial bearing and a second radial bearing, the radial bearings radially support a shaft with an axis of rotation of the exhaust gas turbocharger, and wherein a first outflow gap and a second outflow gap, respectively, are formed between the first radial bearing and a radially extending first supporting wall of the turbocharger, which faces a turbine wheel of the exhaust gas turbocharger for axially supporting the first radial bearing, and the second radial bearing and a radially extending second supporting wall of the turbocharger, which faces a compressor wheel of the exhaust gas turbocharger for axially supporting the second radial bearing. The first outflow gap and/or the second outflow gap is configured inclined or curved relative to the axis of rotation for the axial and simultaneously radial support and/or for the backup of the radial support.
Abstract:
A bearing system includes: a rotatable shaft, a circumferential channel in the shaft with an axially extending profile surface at least part of which is inclined relative to the shaft axis; a bearing, around the shaft in use; a split ring in the circumferential channel in contact with the inclined profile surface, the split ring includes a first part having an outer diameter, and a second part having a greater outer diameter than the first part to provide a thrust surface; a collar, including an internal bore to accommodate the first part of the split ring in use; and a bearing locator for exerting an axial locating force between the split ring and the bearing to locate the bearing on the shaft. An axial thrust load exerted on the split ring by the shaft is transmitted to the collar by the thrust surface, and the split ring is urged along the inclined profile surface so as to produce a radial load on the split ring which is resisted by the collar.
Abstract:
A bearing providing at least two rings able to pivot relative to one another, at least one of the rings including at least two annular ring parts having annular radial surfaces axially opposite each other. The bearing further providing at least one annular shim disposed between the radial surfaces of the annular ring parts and including successive circumferential portions. Each circumferential portion of the shim has a plurality of nicks respectively traversed by axial elements. The nicks of each circumferential portion of the annular shim are shaped and oriented to permit the positioning between the annular ring parts and the removal of each circumferential portion by radial translation.