Abstract:
A battery operated vacuum cleaner is provided with one or more principal batteries and one or more supplemental batteries. The batteries and a controller are configured such that as the power provided by the principal batteries drops, one or more of the supplemental batteries is operative connected to provide power to the appliance. A method for providing a substantially constant level of power to an appliance, such as a vacuum cleaner, using a plurality of power sources comprises providing power from a principal power source connected to the appliance; monitoring an operating voltage supplied to the appliance to detect if the operating voltage is below a predetermined threshold voltage level; and upon detecting that the operating voltage is below the predetermined threshold voltage level, providing power from k of n supplemental power sources connected to the appliance, where k and n are positive integers, and k is less than or equal to n. Optionally, upon detecting that the operating voltage is below the predetermined threshold voltage level and where k is equal to n, the principal and supplemental power sources are disengaged from the appliance.
Abstract:
A surface cleaning apparatus comprises an air flow path extending from a dirty air inlet to a clean air outlet and includes an air treatment member. A suction motor may be provided in the air flow path. A suction motor housing sidewall may comprise a plurality of openings provided in a first side thereof. An outer housing may comprise a longitudinally extending outer housing sidewall having an outer housing air outlet. At least a portion of the suction motor housing that has the plurality of openings is located in the outer housing and spaced from the longitudinally extending outer housing sidewall to define a passage between the outer housing and the suction motor housing. The outer housing air outlet may be angularly spaced around the outer housing with respect to the first side of the suction motor housing.
Abstract:
A surface cleaning apparatus comprises an air flow path extending from a dirty air inlet to a clean air outlet and a suction motor. The surface cleaning apparatus may also comprise a cyclone chamber provided in the air flow path. The cyclone chamber may comprise a cyclone air inlet, a cyclone air outlet and a dirt outlet. The surface cleaning apparatus may comprise a dirt collection chamber having a dirt inlet, a dirt collection chamber first end, an opposed dirt collection chamber second end and a longitudinally extending sidewall. The sidewall may comprise a portion that has a longitudinal length and extends away from the dirt inlet towards the opposed dirt collection chamber second end. A transverse cross sectional area of the dirt collection chamber may varies at least once along the length of the portion of the sidewall.
Abstract:
A surface cleaning apparatus comprises an air flow path extending from a dirty air inlet to a clean air outlet and a flexible suction hose. The surface cleaning apparatus may comprise a main body comprising a suction motor provided in the air flow path. A cyclone bin assembly may be provided on the main body. The surface cleaning apparatus may comprise a suction hose wrap. The suction hose wrap having an accessory tool holder.
Abstract:
Several embodiments of an upright surface cleaning apparatus are disclosed. The surface cleaning apparatus has a first cyclonic cleaning stage and comprises a surface cleaning head having a dirty fluid inlet. A fluid flow path extends from the dirty fluid inlet to a clean air outlet of the upright surface cleaning apparatus. A support member is mounted to the surface cleaning head. A mounting member mounted to the support member. At least one of a first cleaning stage of the upright surface cleaning apparatus and a suction motor is mounted directly or indirectly to the mounting member. A suction motor is provided in the fluid flow path.
Abstract:
A hand surface cleaning apparatus comprises at least one cyclone and at least one dirt collection chamber The dirt collection chamber may be removable from the surface cleaning apparatus as a sealed unit for emptying and/or the dirt collection chamber may be removable with the nozzle.
Abstract:
A cyclone separator useable in a surface cleaning apparatus comprises a cyclone casing defining a cyclone chamber and having first and second opposed ends and a sidewall extending between the first and second ends. A transition member is provided adjacent the end of the cyclone casing distal to the fluid inlet. The transition member has an inner surface the extends inwardly between the sidewall and the distal end.
Abstract:
An upright surface cleaning apparatus has a front end, a rear end and opposed lateral sides and a surface cleaning head having a dirt inlet and rear wheels. The rear wheels have an axis of rotation and a radius. The surface cleaning apparatus also includes an upper section and an upper section mount. The upper section mount movably mounts the upper section to the surface cleaning head at a position forward of the axis of rotation of the rear wheels. The surface cleaning head is movable between an floor cleaning position and a storage position. The surface cleaning apparatus includes an air flow path extending from the dirt inlet to a clean air outlet with a suction motor and a treatment member provided in the air flow path. The air flow path comprises a hose extending between the surface cleaning head and the upper section.
Abstract:
An upright surface cleaning apparatus comprises a floor cleaning head having a dirty air inlet and an upright section moveably mounted to the surface cleaning head. The surface cleaning apparatus also includes an air flow passage extending from the dirty air inlet to a clean air outlet. The air flow passage includes a conduit section. The surface cleaning apparatus also includes a suction motor and an air treatment member positioned in the air flow passage, provided in one of the floor cleaning head and the upright section. The conduit section has an inlet end and an outlet end. The inlet end is rotatably connected to the air flow passage about an axis parallel to air flow through the inlet end, and the outlet end is rotatably connected to the air flow passage about an axis parallel to air flow through the outlet end.
Abstract:
A cyclonic surface cleaning apparatus incorporates a series of sequential physical filtration members to progressively remove smaller particulate matter whereby the physical filtration members collectively have a longer in use time prior to being clogged, thereby permitting a longer operating time prior to the cleaning or replacement of the physical filtration members.